Product-assisted catalysis in base-excision DNA repair

被引:152
作者
Fromme, JC
Bruner, SD
Yang, W
Karplus, M
Verdine, GL [1 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA
关键词
D O I
10.1038/nsb902
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most spontaneous damage to bases in DNA is corrected through the action of the base-excision DNA repair pathway. Base excision repair is initiated by DNA glycosylases, lesion-specific enzymes that intercept aberrant bases in DNA and catalyze their excision. How such proteins accomplish the feat of catalyzing no fewer than five sequential reaction steps using a single active site has been unknown. To help answer this, we report the structure of a trapped catalytic intermediate in DNA repair by human 8-oxoguanine DNA glycosylase. This structure and supporting biochemical results reveal that the enzyme sequesters the excised lesion base and exploits it as a cofactor to participate in catalysis. To our knowledge, the present example represents the first documented case of product-assisted catalysis in an enzyme-catalyzed reaction.
引用
收藏
页码:204 / 211
页数:8
相关论文
共 49 条
[1]  
Aburatani H, 1997, CANCER RES, V57, P2151
[2]   Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage [J].
Arai, K ;
Morishita, K ;
Shinmura, K ;
Kohno, T ;
Kim, SR ;
Nohmi, T ;
Taniwaki, M ;
Ohwada, S ;
Yokota, J .
ONCOGENE, 1997, 14 (23) :2857-2861
[3]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[4]   Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites [J].
Bjoras, M ;
Luna, L ;
Johnson, B ;
Hoff, E ;
Haug, T ;
Rognes, T ;
Seeberg, E .
EMBO JOURNAL, 1997, 16 (20) :6314-6322
[5]   ACTIVE-SITE DYNAMICS IN PROTEIN MOLECULES - A STOCHASTIC BOUNDARY MOLECULAR-DYNAMICS APPROACH [J].
BROOKS, CL ;
BRUNGER, A ;
KARPLUS, M .
BIOPOLYMERS, 1985, 24 (05) :843-865
[6]   DEFORMABLE STOCHASTIC BOUNDARIES IN MOLECULAR-DYNAMICS [J].
BROOKS, CL ;
KARPLUS, M .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (12) :6312-6325
[7]   Recombinant Lactobacillus leichmannii ribonucleosidetriphosphate reductase as biocatalyst in the preparative synthesis of 2′-deoxyribonucleoside-5′-triphosphates [J].
Brunella, A ;
Ghisalba, O .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2000, 10 (1-3) :215-222
[8]   Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA [J].
Bruner, SD ;
Norman, DPG ;
Verdine, GL .
NATURE, 2000, 403 (6772) :859-866
[9]   Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway [J].
Bruner, SD ;
Nash, HM ;
Lane, WS ;
Verdine, GL .
CURRENT BIOLOGY, 1998, 8 (07) :393-403
[10]   POLAR HYDROGEN POSITIONS IN PROTEINS - EMPIRICAL ENERGY PLACEMENT AND NEUTRON-DIFFRACTION COMPARISON [J].
BRUNGER, AT ;
KARPLUS, M .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1988, 4 (02) :148-156