Nonlinear multiscale decompositions:: The approach of A.!Harten

被引:107
作者
Aràndiga, F [1 ]
Donat, R [1 ]
机构
[1] Univ Valencia, Dept Matemat Aplicada, E-46007 Valencia, Spain
关键词
multiscale decomposition; discretization; reconstruction; ENO interpolation;
D O I
10.1023/A:1019104118012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Data-dependent interpolatory techniques can be used in the reconstruction step of a multiresolution scheme designed "a la Harten". In this paper we carefully analyze the class of Essentially Non-Oscillatory (ENO) interpolatory techniques described in [11] and their potential to improve the compression capabilities of multiresolution schemes. When dealing with nonlinear multiresolution schemes the issue of stability also needs to be carefully considered.
引用
收藏
页码:175 / 216
页数:42
相关论文
共 14 条
[1]   On the use of Muhlbach expansions in the recovery step of ENO methods [J].
Abgrall, R ;
Sonar, T .
NUMERISCHE MATHEMATIK, 1997, 76 (01) :1-25
[2]  
AMAT S, 1999, GRAN994 U VAL DEP MA
[3]  
Aràndiga F, 1999, SIAM J SCI COMPUT, V20, P1053, DOI 10.1137/S1064827596308822
[4]   Multiresolution based on weighted averages of the hat function I: Linear reconstruction techniques [J].
Arandiga, F ;
Donat, R ;
Harten, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) :160-203
[5]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[7]  
GUICHAOUA M, 1999, THESIS U MEDITERRANE
[8]   DISCRETE MULTIRESOLUTION ANALYSIS AND GENERALIZED WAVELETS [J].
HARTEN, A .
APPLIED NUMERICAL MATHEMATICS, 1993, 12 (1-3) :153-192
[9]   ENO SCHEMES WITH SUBCELL RESOLUTION [J].
HARTEN, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 83 (01) :148-184
[10]  
HARTEN A, 1987, J COMPUT PHYS, V71, P231, DOI [10.1016/0021-9991(87)90031-3, 10.1006/jcph.1996.5632]