N-formyl peptide receptor phosphorylation domains differentially regulate arrestin and agonist affinity

被引:43
作者
Key, TA
Foutz, TD
Gurevich, VV
Sklar, LA
Prossnitz, ER [1 ]
机构
[1] Univ New Mexico, Hlth Sci Ctr, Dept Cell Biol & Physiol, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Hlth Sci Ctr, Dept Pathol, Albuquerque, NM 87131 USA
[3] Univ New Mexico, Hlth Sci Ctr, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA
[4] Vanderbilt Univ, Med Ctr, Dept Pharmacol, Nashville, TN 37232 USA
关键词
D O I
10.1074/jbc.M204687200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arrestins regulate the signaling and endocytosis of many G protein-coupled receptors (GPCRs). It has been suggested that the functions of arrestins are dependent upon both the number and pattern of phosphorylation sites present in an activated GPCR. However, little is currently known about the relationships between the sites of receptor phosphorylation, the resulting affinities of arrestin binding, and the ensuing mechanisms of receptor regulation for any given GPCR. To investigate these interactions, we used an active truncated mutant of arrestin (amino acids 1-382) and phosphorylation-deficient mutants of the N-formyl peptide receptor (FPR). In contrast to results with wild type arrestins, the truncated arrestin-2 protein bound to the unphosphorylated wild type FPR, although with lower affinity and a low affinity for the agonist as revealed by competition studies with heterotrimeric G proteins. Using FPR mutants, we further demonstrated that the phosphorylation status of serines and threonines between residues 328-332 is a key determinant that regulates the affinity of the FPR for arrestins. Furthermore, we found that the phosphorylation status of serine and threonine residues between amino acids 334 and 339 regulates the affinity of the receptor for agonist when arrestin is bound. These results suggest that the agonist affinity state of the receptor is principally regulated by phosphorylation at specific sites and is not simply a consequence of arrestin binding as has previously been proposed. Furthermore, this is the first demonstration that agonist affinity of a GPCR and the affinity of arrestin binding to the phosphorylated receptor are regulated by distinct receptor phosphodomains.
引用
收藏
页码:4041 / 4047
页数:7
相关论文
共 41 条
[1]   Arrestin binding to the G protein-coupled N-formyl peptide receptor is regulated by the conserved "DRY" sequence [J].
Bennett, TA ;
Maestas, DC ;
Prossnitz, ER .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (32) :24590-24594
[2]   Partial phosphorylation of the N-formyl peptide receptor inhibits G protein association independent of arrestin binding [J].
Bennett, TA ;
Foutz, TD ;
Gurevich, VV ;
Sklar, LA ;
Prossnitz, ER .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (52) :49195-49203
[3]   Real-time analysis of G protein-coupled receptor reconstitution in a solubilized system [J].
Bennett, TA ;
Key, TA ;
Gurevich, VV ;
Neubig, R ;
Prossnitz, ER ;
Sklar, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (25) :22453-22460
[4]   FUNCTIONAL DESENSITIZATION OF THE ISOLATED BETA-ADRENERGIC-RECEPTOR BY THE BETA-ADRENERGIC-RECEPTOR KINASE - POTENTIAL ROLE OF AN ANALOG OF THE RETINAL PROTEIN ARRESTIN (48-KDA PROTEIN) [J].
BENOVIC, JL ;
KUHN, H ;
WEYAND, I ;
CODINA, J ;
CARON, MG ;
LEFKOWITZ, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (24) :8879-8882
[5]   REMOVAL OF PHOSPHORYLATION SITES FROM THE BETA-2-ADRENERGIC RECEPTOR DELAYS ONSET OF AGONIST-PROMOTED DESENSITIZATION [J].
BOUVIER, M ;
HAUSDORFF, WP ;
DEBLASI, A ;
ODOWD, BF ;
KOBILKA, BK ;
CARON, MG ;
LEFKOWITZ, RJ .
NATURE, 1988, 333 (6171) :370-373
[6]   Conservation of the phosphate-sensitive elements in the arrestin family of proteins [J].
Celver, J ;
Vishnivetskiy, SA ;
Chavkin, C ;
Gurevich, VV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (11) :9043-9048
[7]   β-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins [J].
Chen, W ;
Hu, LYA ;
Semenov, MV ;
Yanagawa, S ;
Kikuchi, A ;
Lefkowitz, RJ ;
Miller, WE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (26) :14889-14894
[8]   REAL-TIME ANALYSIS OF THE ASSEMBLY OF LIGAND, RECEPTOR, AND G PROTEIN BY QUANTITATIVE FLUORESCENCE FLOW-CYTOMETRY [J].
FAY, SP ;
POSNER, RG ;
SWANN, WN ;
SKLAR, LA .
BIOCHEMISTRY, 1991, 30 (20) :5066-5075
[9]  
Ferguson SSG, 2001, PHARMACOL REV, V53, P1
[10]   G-protein-coupled receptor regulation: Role of G-protein-coupled receptor kinases and arrestins [J].
Ferguson, SSG ;
Barak, LS ;
Zhang, J ;
Caron, MG .
CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 1996, 74 (10) :1095-1110