A non-interior continuation method for second-order cone programming

被引:23
作者
Chi, Xiaoni [1 ]
Liu, Sanyang [1 ]
机构
[1] Xidian Univ, Dept Math Sci, Xian, Peoples R China
基金
美国国家科学基金会;
关键词
second-order cone programming; non-interior continuation method; global convergence; local superlinear convergence; NONLINEAR COMPLEMENTARITY-PROBLEMS; SMOOTHING NEWTON METHODS; CONVERGENCE; ALGORITHMS; P-0;
D O I
10.1080/02331930701763421
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We extend the smoothing function proposed by Huang, Han and Chen [Journal of Optimization Theory and Applications, 117 (2003), pp. 39-68] for the non-linear complementarity problems to the second-order cone programming (SOCP). Based on this smoothing function, a non-interior continuation method is presented for solving the SOCP. The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that our algorithm is globally and locally superlinearly convergent in absence of strict complementarity at the optimal solution. Numerical results indicate the effectiveness of the algorithm.
引用
收藏
页码:965 / 979
页数:15
相关论文
共 20 条
[1]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[2]  
[Anonymous], 1997, SIAM J CONTROL OPTIM
[3]   A global linear and local quadratic noninterior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions [J].
Chen, BT ;
Xiu, NH .
SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (03) :605-623
[4]   Complementarity functions and numerical experiments on some smoothing newton methods for second-order-cone complementarity problems [J].
Chen, XD ;
Sun, D ;
Sun, J .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2003, 25 (1-3) :39-56
[5]  
Clarke FH., 1983, OPTIMIZATION NONSMOO
[6]  
Faraut J., 1994, ANAL SYMMETRIC CONES
[7]  
Fukushima M, 2001, SIAM J OPTIMIZ, V12, P436
[8]   A combined smoothing and regularization method for monotone second-order cone complementarity problems [J].
Hayashi, S ;
Yamashita, N ;
Fukushima, M .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (02) :593-615
[9]   Sub-quadratic convergence of a smoothing Newton algorithm for the P0 and monotone LCP [J].
Huang, ZH ;
Qi, LQ ;
Sun, DF .
MATHEMATICAL PROGRAMMING, 2004, 99 (03) :423-441
[10]   Predictor-corrector smoothing Newton method, based on a new smoothing function, for solving the nonlinear complementarity problem with a P0 function [J].
Huang, ZH ;
Han, J ;
Chen, Z .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 117 (01) :39-68