Muscle-specific expression of the smyd1 gene is controlled by its 5.3-kb promoter and 5′-flanking sequence in zebrafish embryos

被引:23
作者
Du, Shao Jun [1 ]
Rotllant, Josep [1 ]
Tan, Xungang [1 ]
机构
[1] Univ Maryland, Inst Biotechnol, Ctr Marine Biotechnol, Baltimore, MD 21202 USA
关键词
transgenic zebrafish; skeletal muscle; muscle-specificity; Smyd1;
D O I
10.1002/dvdy.20984
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Zebrafish SmyD1 is a SET and MYND domain-containing protein that plays an important role in myofiber maturation and muscle contraction. SmyD1 is required for myofibril organization and sarcomere assembly during myofiber maturation. Whole-mount in situ hybridization revealed that smyd1 mRNAs are specifically expressed in skeletal and cardiac muscles in zebrafish embryos. However, it is unknown if smyd1 is expressed in other striated muscles, such as cranial and fin muscles, and moreover, the regulatory elements required for its muscle-specific expression. We report here the analyses of smyd1 expression using smyd1-gfp transgenic zebrafish. smyd1-gfp transgenic zebrafish were generated using the 5.3-kb smyd1 promoter and its 5'-flanking sequence. GFP expression was found in the skeletal and cardiac muscles of smyd1-gfp transgenic embryos. GFP expression appeared stronger in slow muscles than fast muscles in transgenic zebrafish larvae. In addition, GFP expression was also detected in cranial and fin muscles of smyd1-gfp transgenic zebrafish larvae. In situ hybridization confirmed smyd1 mRNA expression in these tissues, suggesting that the expression of the smyd1-gfp transgene recapitulated that of the endogenous smyd1 gene. Deletion analysis revealed that the 0.5-kb sequence in the proximal promoter of smyd1 was essential for its muscle specificity. Together, these data indicate that smyd1 is specifically expressed in most, if not all, striated muscles, and the muscle specificity is controlled by the 5.3-kb promoter and flanking sequences.
引用
收藏
页码:3306 / 3315
页数:10
相关论文
共 43 条
[1]   THE AEQUOREA-VICTORIA GREEN FLUORESCENT PROTEIN CAN BE USED AS A REPORTER IN LIVE ZEBRAFISH EMBRYOS [J].
AMSTERDAM, A ;
LIN, S ;
HOPKINS, N .
DEVELOPMENTAL BIOLOGY, 1995, 171 (01) :123-129
[2]   IMMUNOCHEMICAL ANALYSIS OF MYOSIN HEAVY-CHAIN DURING AVIAN MYOGENESIS INVIVO AND INVITRO [J].
BADER, D ;
MASAKI, T ;
FISCHMAN, DA .
JOURNAL OF CELL BIOLOGY, 1982, 95 (03) :763-770
[3]  
Barresi MJF, 2000, DEVELOPMENT, V127, P2189
[4]   Distinct mechanisms regulate slow-muscle development [J].
Barresi, MJF ;
D'Angelo, JA ;
Hernández, LP ;
Devoto, SH .
CURRENT BIOLOGY, 2001, 11 (18) :1432-1438
[5]   Distinct dynamics and distribution of histone methyl-lysine derivatives in mouse development [J].
Biron, VL ;
McManus, KJ ;
Hu, NH ;
Hendzel, MJ ;
Underhill, DA .
DEVELOPMENTAL BIOLOGY, 2004, 276 (02) :337-351
[6]   Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog [J].
Blagden, CS ;
Currie, PD ;
Ingham, PW ;
Hughes, SM .
GENES & DEVELOPMENT, 1997, 11 (17) :2163-2175
[7]   An initial blueprint for myogenic differentiation [J].
Blais, A ;
Tsikitis, M ;
Acosta-Alvear, D ;
Sharan, R ;
Kluger, Y ;
Dynlacht, BD .
GENES & DEVELOPMENT, 2005, 19 (05) :553-569
[8]   INTRONS INCREASE TRANSCRIPTIONAL EFFICIENCY IN TRANSGENIC MICE [J].
BRINSTER, RL ;
ALLEN, JM ;
BEHRINGER, RR ;
GELINAS, RE ;
PALMITER, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (03) :836-840
[9]   COMPARISON OF INTRON-DEPENDENT AND INTRON-INDEPENDENT GENE-EXPRESSION [J].
BUCHMAN, AR ;
BERG, P .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (10) :4395-4405
[10]   Chromatin remodeling and stem cell theory of relativity [J].
Cerny, J ;
Quesenberry, PJ .
JOURNAL OF CELLULAR PHYSIOLOGY, 2004, 201 (01) :1-16