Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters

被引:188
作者
Jentsch, Thomas J.
机构
[1] Leibniz Inst Mol Pharmacol, FMP, MDC, D-13125 Berlin, Germany
[2] Max Delbruck Ctr Mol Med, D-13125 Berlin, Germany
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2007年 / 578卷 / 03期
关键词
D O I
10.1113/jphysiol.2006.124719
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Several members of the CLC family of Cl- channels and transporters are expressed in vesicles of the endocytotic-lysosomal pathway, all of which are acidified by V-type proton pumps. These CLC proteins are thought to facilitate vesicular acidification by neutralizing the electric current of the H+-ATPase. Indeed, the disruption of ClC-5 impaired the acidification of endosomes, and the knock-out (KO) of ClC-3 that of endosomes and synaptic vesicles. KO mice are available for all vesicular CLCs (ClC-3 to ClC-7), and ClC-5 and ClC-7, as well as its beta-subunit Ostm1, are mutated in human disease. The associated mouse and human pathologies, ranging from impaired endocytosis and nephrolithiasis (ClC-5) to neurodegeneration (ClC-3), lysosomal storage disease (ClC-6, ClC-7/Ostm1) and osteopetrosis (ClC-7/Ostm1), were crucial in identifying the physiological roles of vesicular CLCs. Whereas the intracellular localization of ClC-6 and ClC-7/Ostm1 precluded biophysical studies, the partial expression of ClC-4 and -5 at the cell surface allowed the detection of strongly outwardly rectifying currents that depended on anions and pH. Surprisingly, ClC-4 and ClC-5 (and probably ClC-3) do not function as Cl- channels, but rather as electrogenic Cl--H+ exchangers. This hints at an important role for luminal chloride in the endosomal-lysosomal system.
引用
收藏
页码:633 / 640
页数:8
相关论文
共 38 条
[1]   Separate ion pathways in a Cl+/H+ exchanger [J].
Accardi, A ;
Walden, M ;
Nguitragool, W ;
Jayaram, H ;
Williams, C ;
Miller, C .
JOURNAL OF GENERAL PHYSIOLOGY, 2005, 126 (06) :563-570
[2]   Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels [J].
Accardi, A ;
Miller, C .
NATURE, 2004, 427 (6977) :803-807
[3]   Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human [J].
Chalhoub, N ;
Benachenhou, N ;
Rajapurohitam, V ;
Pata, M ;
Ferron, M ;
Frattini, A ;
Villa, A ;
Vacher, J .
NATURE MEDICINE, 2003, 9 (04) :399-406
[4]   Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the CICN7chloride channel gene [J].
Cleiren, E ;
Bénichou, O ;
Van Hul, E ;
Gram, J ;
Bollerslev, J ;
Singer, FR ;
Beaverson, K ;
Aledo, A ;
Whyte, MP ;
Yoneyama, T ;
deVernejoul, MC ;
Van Hul, W .
HUMAN MOLECULAR GENETICS, 2001, 10 (25) :2861-2867
[5]   The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles [J].
De Angeli, A. ;
Monachello, D. ;
Ephritikhine, G. ;
Frachisse, J. M. ;
Thomine, S. ;
Gambale, F. ;
Barbier-Brygoo, H. .
NATURE, 2006, 442 (7105) :939-942
[6]   Molecular identification of a volume-regulated chloride channel [J].
Duan, D ;
Winter, C ;
Cowley, S ;
Hume, JR ;
Horowitz, B .
NATURE, 1997, 390 (6658) :417-421
[7]   X-ray structure of a CIC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity [J].
Dutzler, R ;
Campbell, EB ;
Cadene, M ;
Chait, BT ;
MacKinnon, R .
NATURE, 2002, 415 (6869) :287-294
[8]   Barttin is a Cl- channel β-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion [J].
Estévez, R ;
Bottger, T ;
Stein, V ;
Birkenhäger, R ;
Otto, E ;
Hildebrandt, F ;
Jentsch, TJ .
NATURE, 2001, 414 (6863) :558-561
[9]   Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis [J].
Frattini, A ;
Orchard, PJ ;
Sobacchi, C ;
Giliani, S ;
Abinun, M ;
Mattsson, JP ;
Keeling, DJ ;
Andersson, AK ;
Wallbrandt, P ;
Zecca, L ;
Notarangelo, LD ;
Vezzoni, P ;
Villa, A .
NATURE GENETICS, 2000, 25 (03) :343-346
[10]   Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents [J].
Friedrich, T ;
Breiderhoff, T ;
Jentsch, TJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (02) :896-902