Exploring options for water savings in lowland rice using a modelling approach

被引:104
作者
Belder, P.
Bouman, B. A. M.
Spiertz, J. H. J.
机构
[1] Univ Wageningen, Grp Crop & Weed Ecol, NL-6700 AK Wageningen, Netherlands
[2] Int Rice Res Inst, Crop Soil & Water Sci Div, Manila, Philippines
关键词
irrigation; water balance; percolation; groundwater depth; soil permeability;
D O I
10.1016/j.agsy.2006.03.001
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Water-saving irrigation regimes are needed to deal with a reduced availability of water for rice production. Two important water-saving technologies at field scale are alternately submerged-nonsubmerged (SNS) and flush irrigated (FI) rice. SNS allows dry periods between submerged soil conditions, whereas FI resembles the irrigation regime of an upland crop. The effects of these regimes on the water balance and water savings were compared with continuously submerged (CS) and rainfed (RF) regimes. The crop growth model ORYZA2000 was used to calculate seasonal water balances of CS, SNS, FI, and RF regimes for two locations: Tuanlin in Hubei province in China from 1999 to 2002 during summer seasons and Los Banos in the Philippines in 2002-2003 during dry seasons. The model was first parameterized for site-specific soil conditions and cultivar traits and then evaluated using a combination of statistical and visual comparisons of observed and simulated variables. ORYZA2000 accurately simulated the crop variables leaf area index, biomass, and yield, and the soil water balance variables field water level and soil water tension in the root zone. Next, a scenario study was done to analyse the effect of water regime, soil permeability, and groundwater table depth on irrigation requirement and associated rice yield. For this study historical weather data for both sites were used. Within seasons, the amount of irrigation water application was higher for CS than for any of the water-saving regimes. It was found that groundwater table depth strongly affected the water-yield relationship for the water-saving regimes. Rainfed rice did not lead to significant yield reductions at Tuanlin as long as the groundwater table depth was less than 20 cm. Simulations at Los Banos with a more drought tolerant cultivar showed that FI resulted in higher yields than RF thereby requiring only 420 mm of irrigation. The soil type determined the irrigation water requirement in CS and SNS regimes. A more permeable soil requires around 2000 mm of irrigation water whereas less permeable, heavy soil types require less than half of this amount. We conclude that water savings can be considerable when water regimes are adapted to soil characteristics and rainfall dynamics. To further optimize water-saving regimes in lowland rice, groundwater table dynamics and soil permeability should be taken into account. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:91 / 114
页数:24
相关论文
共 31 条
[1]   Nitrogen economy and water productivity of lowland rice under water-saving irrigation [J].
Belder, P ;
Spiertz, JHJ ;
Bouman, BAM ;
Lu, G ;
Tuong, TP .
FIELD CROPS RESEARCH, 2005, 93 (2-3) :169-185
[2]   Crop performance, nitrogen and water use in flooded and aerobic rice [J].
Belder, P ;
Bouman, BAM ;
Spiertz, JHJ ;
Peng, S ;
Castañeda, AR ;
Visperas, RM .
PLANT AND SOIL, 2005, 273 (1-2) :167-182
[3]   Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia [J].
Belder, P ;
Bouman, BAM ;
Cabangon, R ;
Lu, G ;
Quilang, EJP ;
Li, YH ;
Spiertz, JHJ ;
Tuong, TP .
AGRICULTURAL WATER MANAGEMENT, 2004, 65 (03) :193-210
[4]  
Bouman B.A.M. Kropff. M.J. Tuong. T.P. Wopereis. M.C.S., 2001, ORYZA2000: Modelling Lowland Rice, P235, DOI DOI 10.22004/AG.ECON.281825
[5]   Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions [J].
Bouman, BAM ;
van Laar, HH .
AGRICULTURAL SYSTEMS, 2006, 87 (03) :249-273
[6]   Yield and water use of irrigated tropical aerobic rice, systems [J].
Bouman, BAM ;
Peng, S ;
Castañeda, AR ;
Visperas, RM .
AGRICULTURAL WATER MANAGEMENT, 2005, 74 (02) :87-105
[7]   Field water management to save water and increase its productivity in irrigated lowland rice [J].
Bouman, BAM ;
Tuong, TP .
AGRICULTURAL WATER MANAGEMENT, 2001, 49 (01) :11-30
[8]   The 'School of de Wit' crop growth simulation models: A pedigree and historical overview [J].
Bouman, BAM ;
vanKeulen, H ;
vanLaar, HH ;
Rabbinge, R .
AGRICULTURAL SYSTEMS, 1996, 52 (2-3) :171-198
[9]  
Cabangon R. J., 2001, Water-saving irrigation for rice: Proceedings of an International Workshop held in Wuhan, China, 23-25 March 2001, P55
[10]   Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China [J].
Cabangon, Romeo J. ;
To Phuc Tuong ;
Castillo, Ernesto G. ;
Bao, Lang Xing ;
Lu, Guoan ;
Wang, Guangho ;
Cui, Yuanlai ;
Bouman, Bas A. M. ;
Li, Yuanhua ;
Chen, Chongde ;
Wang, Jianzhang .
PADDY AND WATER ENVIRONMENT, 2004, 2 (04) :195-206