Supersymmetric regularization, two-loop QCD amplitudes, and coupling shifts
被引:240
作者:
Bern, Z
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
Bern, Z
[1
]
De Freitas, A
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
De Freitas, A
Dixon, L
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
Dixon, L
Wong, HL
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
Wong, HL
机构:
[1] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[2] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA
来源:
PHYSICAL REVIEW D
|
2002年
/
66卷
/
08期
关键词:
D O I:
10.1103/PhysRevD.66.085002
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
We present a definition of the four-dimensional helicity (FDH) regularization scheme valid for two or more loops. This scheme was previously defined and utilized at one loop. It amounts to a variation on the standard 't Hooft-Veltman scheme and is designed to be compatible with the use of helicity states for "observed" particles. It is similar to dimensional reduction in that it maintains an equal number of bosonic and fermionic states, as required for preserving supersymmetry. Supersymmetry Ward identities relate different helicity amplitudes in supersymmetric theories. As a check that the FDH scheme preserves supersymmetry, at least through two loops, we explicitly verify a number of these identities for gluon-gluon scattering (gg-->gg) in supersymmetric QCD. These results also cross-check recent nontrivial two-loop calculations in ordinary QCD. Finally, we compute the two-loop shift between the FDH coupling and the standard modified minimal subtraction ((MS) over bar) scheme coupling, alpha(s). The FDH shift is identical to the one for dimensional reduction. The two-loop coupling shifts are then used to obtain the three-loop QCD beta function in the FDH and dimensional reduction schemes.