Identification and control of power converters by means of neural networks

被引:43
作者
Leyva, R
MartinezSalamero, L
Jammes, B
Marpinard, JC
Guinjoan, F
机构
[1] CNRS,LAB AUTOMAT & ARQUITECTURE SYST,TOULOUSE,FRANCE
[2] UPC,ESCOLA TECN SUPER ENGN TELECOMMUN,DEPT ELECT ENGN,BARCELONA 08034,SPAIN
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 1997年 / 44卷 / 08期
关键词
index converters; neural networks; pseudolinearization;
D O I
10.1109/81.611270
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the use of neural networks for identification and control of power converters, A nonparametric model of a de-to-de switching converter implemented by means of a neural network emulator identifies the converter dynamics in cases of uncertainty in the load parameter. A pseudo-linearization control technique resulting in converter regulation and closed-loop linear dynamic behavior is also implemented by means of a neural controller. Simulation results in a PWM boost converter under large-signal operation illustrate both applications.
引用
收藏
页码:735 / 742
页数:8
相关论文
共 20 条
[1]  
BIEL D, 1996, P ISCAS 96 IEEE INT, P589
[2]   HIGH-POWER CONDITIONING FOR SPACE APPLICATIONS [J].
CAPEL, A ;
OSULLIVAN, D ;
MARPINARD, JC .
PROCEEDINGS OF THE IEEE, 1988, 76 (04) :391-408
[3]  
Capel A, 1996, IEEE POWER ELECTRON, P846, DOI 10.1109/PESC.1996.548680
[4]   An experimental neural controller implementing a VSC for a DC/DC PWM converter with power factor corrector [J].
Carrasco, JM ;
Quero, JM ;
Ridao, FP ;
Perales, MA ;
Franquelo, LG .
PESC 96 RECORD - 27TH ANNUAL IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS I AND II, 1996, :1488-1493
[5]  
CHAN HC, 1993, IEEE POWER ELECTRON, P887, DOI 10.1109/PESC.1993.472026
[6]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[7]   ON THE APPROXIMATE REALIZATION OF CONTINUOUS-MAPPINGS BY NEURAL NETWORKS [J].
FUNAHASHI, K .
NEURAL NETWORKS, 1989, 2 (03) :183-192
[8]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[9]   GLOBAL TRANSFORMATIONS OF NON-LINEAR SYSTEMS [J].
HUNT, LR ;
SU, R ;
MEYER, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (01) :24-31
[10]  
JAMMES B, 1996, P ELECTRIMACS 96, P617