A precise packing sequence for self-assembled convex structures

被引:104
作者
Chen, Ting
Zhang, Zhenli
Glotzer, Sharon C. [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
关键词
colloids; self-assembly; simulation; virus assembly;
D O I
10.1073/pnas.0604239104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular simulations of the self-assembly of cone-shaped particles with specific, attractive interactions are performed. Upon cooling from random initial conditions, we find that the cones self-assemble into clusters and that clusters comprised of particular numbers of cones (e.g., 4-17, 20, 27, 32, and 42) have a unique and precisely packed structure that is robust over a range of cone angles. These precise clusters form a sequence of structures at specific cluster sizes (a "precise packing sequence") that for small sizes is identical to that observed in evaporation-driven assembly of colloidal spheres. We further show that this sequence is reproduced and extended in simulations of two simple models of spheres self-assembling from random initial conditions subject to convexity constraints, including an initial spherical convexity constraint for moderate- and large-sized clusters. This sequence contains six of the most common virus capsid structures obtained in vivo, including large chiral clusters and a cluster that may correspond to several nonicosahedral, spherical virus capsids obtained in vivo. Our findings suggest that this precise packing sequence results from free energy minimization subject to convexity constraints and is applicable to a broad range of assembly processes.
引用
收藏
页码:717 / 722
页数:6
相关论文
共 55 条
[1]  
Allen M. P., 2017, Computer Simulation of Liquids, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]   RARE-GAS CLUSTERS - SOLIDS, LIQUIDS, SLUSH, AND MAGIC NUMBERS [J].
BECK, TL ;
JELLINEK, J ;
BERRY, RS .
JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (01) :545-554
[3]   LOCAL RULE-BASED THEORY OF VIRUS SHELL ASSEMBLY [J].
BERGER, B ;
SHOR, PW ;
TUCKERKELLOGG, L ;
KING, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (16) :7732-7736
[4]  
Bottcher B, 1997, J VIROL, V71, P325
[5]   Viral self-assembly as a thermodynamic process [J].
Bruinsma, RF ;
Gelbart, WM ;
Reguera, D ;
Rudnick, J ;
Zandi, R .
PHYSICAL REVIEW LETTERS, 2003, 90 (24) :4-248101
[6]   PHYSICAL PRINCIPLES IN CONSTRUCTION OF REGULAR VIRUSES [J].
CASPAR, DLD ;
KLUG, A .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1962, 27 :1-&
[7]  
CHEN T, 2006, SIMULATION STUDIES P
[8]  
CHEN T, 2006, SIMULATION STUDIES S
[9]   Self-organization of bidisperse colloids in water droplets [J].
Cho, YS ;
Yi, GR ;
Lim, JM ;
Kim, SH ;
Manoharan, VN ;
Pine, DJ ;
Yang, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (45) :15968-15975
[10]   Colloidal clusters of microspheres from water-in-oil emulsions [J].
Cho, YS ;
Yi, GR ;
Kim, SH ;
Pine, DJ ;
Yang, SM .
CHEMISTRY OF MATERIALS, 2005, 17 (20) :5006-5013