A noncommutative model for a mini black hole

被引:38
作者
Arraut, I. [1 ]
Batic, D. [2 ]
Nowakowski, M. [1 ]
机构
[1] Univ Los Andes, Dept Fis, Bogota, Colombia
[2] Univ Los Andes, Dept Matemat, Bogota, Colombia
关键词
EQUATION-OF-STATE; FLUID SPHERES;
D O I
10.1088/0264-9381/26/24/245006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze the static and spherically symmetric perfect fluid solutions of Einstein field equations inspired by the noncommutative geometry. In the framework of the noncommutative geometry, this solution is interpreted as a mini black hole which has the Schwarzschild geometry outside the event horizon, but whose standard central singularity is replaced by a self-gravitating droplet. The energy-momentum tensor of the droplet is of the anisotropic fluid obeying a nonlocal equation of state. The radius of the droplet is finite and the pressure, which gives rise to the hydrostatic equilibrium, is positive definite in the interior.
引用
收藏
页数:9
相关论文
共 23 条
[1]   Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects [J].
Abreu, H. ;
Hernandez, H. ;
Nunez, L. A. .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (18) :4631-4645
[2]   The generalized uncertainty principle and black hole remnants [J].
Adler, RJ ;
Chen, PS ;
Santiago, DI .
GENERAL RELATIVITY AND GRAVITATION, 2001, 33 (12) :2101-2108
[3]   The black hole final state for the Dirac fields in Schwarzschild spacetime [J].
Ahn, D. ;
Moon, Y. H. ;
Mann, R. B. ;
Fuentes-Schuller, I. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (06)
[4]  
ANSOLDI S, 2006, PHYS LETT B, V645, P547
[5]   Comparing two approaches to Hawking radiation of Schwarzschild-de Sitter black holes [J].
Arraut, I. ;
Batic, D. ;
Nowakowski, M. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (12)
[6]   ANISOTROPIC FLUID SPHERES IN GENERAL-RELATIVITY [J].
BAYIN, SS .
PHYSICAL REVIEW D, 1982, 26 (06) :1262-1274
[7]   The decay-time of non-commutative micro-black holes [J].
Casadio, Roberto ;
Nicolini, Piero .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (11)
[8]   A STATIC AXISYMMETRICAL ANISOTROPIC FLUID SOLUTION IN GENERAL-RELATIVITY [J].
HAGGAG, S .
ASTROPHYSICS AND SPACE SCIENCE, 1990, 173 (01) :47-51
[9]   Nonlocal equation of state in anisotropic static fluid spheres in general relativity [J].
Hernández, H ;
Núñez, L .
CANADIAN JOURNAL OF PHYSICS, 2004, 82 (01) :29-51
[10]   Non-local equation of state in general relativistic radiating spheres [J].
Hernández, H ;
Núñez, LA ;
Percoco, U .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (03) :871-896