Loss of Rb overrides the requirement for ERK activity for cell proliferation

被引:30
作者
D'Abaco, GM [1 ]
Hooper, S [1 ]
Paterson, H [1 ]
Marshall, CJ [1 ]
机构
[1] Inst Canc Res, Canc Res UK, Ctr Cellular & Mol Biol, London SW3 6JB, England
关键词
ras; MAP kinase; ERK; retinoblastoma;
D O I
10.1242/jcs.00161
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The Ras GTPase is a critical transducer of mitogenic signals ultimately leading to inactivation of the retinoblastoma (Rb) protein, but the molecular basis underlying Ras-dependent control of cell cycle kinetics remains to a great extent unknown. In an effort to further elucidate the role of Ras activation in cell cycle control, we have studied the role of the downstream Mek-ERK pathway in facilitating exit from the quiescent GO state and passage through the G1/S transition. We have adopted a genetic approach in combination with U0126, an inhibitor of Mek activation to study the role of Mek in cell cycle progression. Here we report that whereas wild-type (Wt) mouse embryo fibroblasts (MEFs) depend on ERK activation to enter the cell cycle, Rb-deficient (Rb-/-) MEFs have a reduced requirement for ERK signalling. Indeed in the presence of U0126 we found that Rb-null MEFs can exit G0, make the G1/S transition and proliferate. Analysis of Rb-deficient tumour cell lines also revealed a reduced requirement for ERK signalling in asynchronous growth. We discuss the molecular mechanism that may underlie this escape from MAP kinase signalling.
引用
收藏
页码:4607 / 4616
页数:10
相关论文
共 59 条
[1]   Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27(KIP1) [J].
Aktas, H ;
Cai, H ;
Cooper, GM .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (07) :3850-3857
[2]   TRANSFORMING P21(RAS) MUTANTS AND C-ETS-2 ACTIVATE THE CYCLIN D1 PROMOTER THROUGH DISTINGUISHABLE REGIONS [J].
ALBANESE, C ;
JOHNSON, J ;
WATANABE, G ;
EKLUND, N ;
VU, D ;
ARNOLD, A ;
PESTELL, RG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23589-23597
[3]   PD-098059 IS A SPECIFIC INHIBITOR OF THE ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE KINASE IN-VITRO AND IN-VIVO [J].
ALESSI, DR ;
CUENDA, A ;
COHEN, P ;
DUDLEY, DT ;
SALTIEL, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27489-27494
[4]  
BOS JL, 1989, CANCER RES, V49, P4682
[5]   EFFECT OF A DOMINANT INHIBITORY HA-RAS MUTATION ON MITOGENIC SIGNAL TRANSDUCTION IN NIH 3T3 CELLS [J].
CAI, H ;
SZEBERENYI, J ;
COOPER, GM .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (10) :5314-5323
[6]   The p21Cip1 and p27Kip1 CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts [J].
Cheng, MG ;
Olivier, P ;
Diehl, JA ;
Fero, M ;
Roussel, MF ;
Roberts, JM ;
Sherr, CJ .
EMBO JOURNAL, 1999, 18 (06) :1571-1583
[7]   Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1) [J].
Cheng, MG ;
Sexl, V ;
Sherr, CJ ;
Roussel, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (03) :1091-1096
[8]  
D'Abaco GM, 2000, METHOD ENZYMOL, V325, P415
[9]   Specificity and mechanism of action of some commonly used protein kinase inhibitors [J].
Davies, SP ;
Reddy, H ;
Caivano, M ;
Cohen, P .
BIOCHEMICAL JOURNAL, 2000, 351 (351) :95-105
[10]   GENETICS OF SIGNAL-TRANSDUCTION IN INVERTEBRATES [J].
DICKSON, B ;
HAFEN, E .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1994, 4 (01) :64-70