Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p

被引:97
作者
Xue, Y
Bai, XX
Lee, I
Kallstrom, G
Ho, J
Brown, J
Stevens, A
Johnson, AW [1 ]
机构
[1] Univ Texas, Sect Mol Genet & Microbiol, Austin, TX 78712 USA
[2] Univ Texas, Inst Mol & Cellular Biol, Austin, TX 78712 USA
[3] Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA
关键词
D O I
10.1128/MCB.20.11.4006-4015.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The RAT1 gene of Saccharomyces cerevisiae encodes a 5'-->3' exoribonuclease which plays an essential role in yeast RNA degradation and/or processing in the nucleus. We have cloned a previously uncharacterized gene (YGL246c) that we refer to as RAI1 (Rat1p interacting protein 1). RAI1 is homologous to Caenorhabditis elegans DOM-3 and human DOM3Z. Deletion of RAI1 confers a growth defect which can be complemented by an additional copy of RAT1 on a centromeric vector or by directing Xrn1p, the cytoplasmic homolog of Rat1p, to the nucleus through the addition of a nuclear targeting sequence. Deletion of RAI1 is synthetically lethal with the rat1-1(ts) mutation and shows genetic interaction with a deletion of SKI2 but not XRN1. Polysome analysis of an rail deletion mutant indicated a defect in 60S biogenesis which was nearly fully reversed by high-copy RAT1. Northern blot analysis of rRNAs revealed that rail is required for normal 5.8S processing. In the absence of RAI1, 5.8S(L) was the predominant form of 5.8S and there was an accumulation of 3'-extended forms but not 5'-extended species of 5.8S. In addition, a 27S pre-rRNA species accumulated in the rail mutant. Thus, deletion of RAI1 affects both 5' and 3' processing reactions of 5.8S rRNA. Consistent with the in vivo data suggesting that RAI1 enhances RAT1 function, purified Rai1p stabilized the in vitro exoribonuclease activity of Rat1p.
引用
收藏
页码:4006 / 4015
页数:10
相关论文
共 44 条
[1]   A METHOD FOR GENE DISRUPTION THAT ALLOWS REPEATED USE OF URA3 SELECTION IN THE CONSTRUCTION OF MULTIPLY DISRUPTED YEAST STRAINS [J].
ALANI, E ;
CAO, L ;
KLECKNER, N .
GENETICS, 1987, 116 (04) :541-545
[2]   STRUCTURE OF THE YEAST TAP1 PROTEIN - DEPENDENCE OF TRANSCRIPTION ACTIVATION ON THE DNA CONTEXT OF THE TARGET GENE [J].
ALDRICH, TL ;
DISEGNI, G ;
MCCONAUGHY, BL ;
KEEN, NJ ;
WHELEN, S ;
HALL, BD .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (06) :3434-3444
[3]   The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases [J].
Allmang, C ;
Petfalski, E ;
Podtelejnikov, A ;
Mann, M ;
Tollervey, D ;
Mitchell, P .
GENES & DEVELOPMENT, 1999, 13 (16) :2148-2158
[4]   Functions of the exosome in rRNA, snoRNA and snRNA synthesis [J].
Allmang, C ;
Kufel, J ;
Chanfreau, G ;
Mitchell, P ;
Petfalski, E ;
Tollervey, D .
EMBO JOURNAL, 1999, 18 (19) :5399-5410
[5]   ISOLATION AND CHARACTERIZATION OF RAT1 - AN ESSENTIAL GENE OF SACCHAROMYCES-CEREVISIAE REQUIRED FOR THE EFFICIENT NUCLEOCYTOPLASMIC TRAFFICKING OF MESSENGER-RNA [J].
AMBERG, DC ;
GOLDSTEIN, AL ;
COLE, CN .
GENES & DEVELOPMENT, 1992, 6 (07) :1173-1189
[6]   The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex [J].
Anderson, JSJ ;
Parker, R .
EMBO JOURNAL, 1998, 17 (05) :1497-1506
[7]  
[Anonymous], 1994, METHODS YEAST GENETI
[8]  
Ausubel F.M., 1988, CURRENT PROTOCOLS MO
[9]   A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates [J].
Bashkirov, VI ;
Scherthan, H ;
Solinger, JA ;
Buerstedde, JM ;
Heyer, WD .
JOURNAL OF CELL BIOLOGY, 1997, 136 (04) :761-773
[10]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3