Improved Segmented All-Electron Relativistically Contracted Basis Sets for the Lanthanides

被引:139
作者
Aravena, Daniel [1 ,2 ]
Neese, Frank [1 ]
Pantazis, Dimitrios A. [1 ]
机构
[1] Max Planck Inst Chem Energiekonvers, Stifstr 34-36, D-45470 Mulheim, Germany
[2] Univ Santiago Chile USACH, Fac Quim & Biol, Casilla 40,Correo 33, Santiago, Chile
关键词
DENSITY-FUNCTIONAL THEORY; STATE PERTURBATION-THEORY; ZETA VALENCE QUALITY; AUXILIARY BASIS-SETS; COMPLEXES; ENERGY; ATOMS; IMPLEMENTATION; APPROXIMATION; HAMILTONIANS;
D O I
10.1021/acs.jctc.5b01048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improved versions of the segmented all-electron relativistically contracted (SARC) basis sets for the lanthanides are presented. The second-generation SARC2 basis sets maintain efficient construction of their predecessors and their individual adaptation to the DKH2 and ZORA Hamiltonians, but feature exponents optimized with a completely new orbital shape fitting procedure and a slightly expanded f space that results in sizable improvement in CASSCF energies and in significantly more accurate prediction of spin-orbit coupling parameters. Additionally, an extended set of polarization/correlation functions is constructed that is appropriate for multireference correlated calculations and new auxiliary basis sets for use in resolution-of identity (density-fitting) approximations in combination with both DFT and wave function based treatments. Thus, the SARC2 basis sets extend the applicability of the first-generation DFT-oriented basis sets to routine all-electron wave function-based treatments of lanthanide complexes. The new basis sets are benchmarked with respect to excitation energies, radial distribution functions, optimized geometries, orbital eigenvalues, ionization potentials, and spin-orbit coupling parameters of lanthanide systems and are shown to be suitable for the description of magnetic and spectroscopic properties using both DFT and multireference wave function-based methods.
引用
收藏
页码:1148 / 1156
页数:9
相关论文
共 64 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]   2ND-ORDER PERTURBATION-THEORY WITH A COMPLETE ACTIVE SPACE SELF-CONSISTENT FIELD REFERENCE FUNCTION [J].
ANDERSSON, K ;
MALMQVIST, PA ;
ROOS, BO .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (02) :1218-1226
[3]   Third-order multireference perturbation theory:: The n-electron valence state perturbation-theory approach -: art. no. 054108 [J].
Angeli, C ;
Bories, B ;
Cavallini, A ;
Cimiraglia, R .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (05)
[4]   Introduction of n-electron valence states for multireference perturbation theory [J].
Angeli, C ;
Cimiraglia, R ;
Evangelisti, S ;
Leininger, T ;
Malrieu, JP .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (23) :10252-10264
[5]   n-electron valence state perturbation theory:: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants [J].
Angeli, C ;
Cimiraglia, R ;
Malrieu, JP .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (20) :9138-9153
[6]   N-electron valence state perturbation theory:: a fast implementation of the strongly contracted variant [J].
Angeli, C ;
Cimiraglia, R ;
Malrieu, JP .
CHEMICAL PHYSICS LETTERS, 2001, 350 (3-4) :297-305
[7]   First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets [J].
Atanasov, Mihail ;
Aravena, Daniel ;
Suturina, Elizaveta ;
Bill, Eckhard ;
Maganas, Dimitrios ;
Neese, Frank .
COORDINATION CHEMISTRY REVIEWS, 2015, 289 :177-214
[8]   A Modern First-Principles View on Ligand Field Theory Through the Eyes of Correlated Multireference Wavefunctions [J].
Atanasov, Mihail ;
Ganyushin, Dmitry ;
Sivalingam, Kantharuban ;
Neese, Frank .
MOLECULAR ELECTRONIC STRUCTURES OF TRANSITION METAL COMPLEXES II, 2012, 143 :149-220
[9]   Self-consistent molecular Hartree-Fock-Slater calculations - I. The computational procedure [J].
Baerends, E. J. ;
Ellis, D. E. ;
Ros, P. .
CHEMICAL PHYSICS, 1973, 2 (01) :41-51
[10]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652