Performance analysis of multi-innovation gradient type identification methods

被引:310
作者
Ding, Feng [1 ]
Chen, Tongwen
机构
[1] So Yangtze Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
recursive identification; parameter estimation; stochastic gradient; convergence properties; forgetting factors; stochastic processes;
D O I
10.1016/j.automatica.2006.07.024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is well-known that the stochastic gradient (SG) identification algorithm has poor convergence rate. In order to improve the convergence rate, we extend the SG algorithm from the viewpoint of innovation modification and present multi-innovation gradient type identification algorithms, including a multi-innovation stochastic gradient (MISG) algorithm and a multi-innovation forgetting gradient (MIFG) algorithm. Because the multi-innovation gradient type algorithms use not only the current data but also the past data at each iteration, parameter estimation accuracy can be improved. Finally, the performance analysis and simulation results show that the proposed MISG and MIFG algorithms have faster convergence rates and better tracking performance than their corresponding SG algorithms. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 22 条
[1]   ADAPTIVE-CONTROL VIA CONSISTENT ESTIMATION FOR DETERMINISTIC SYSTEMS [J].
CHEN, HF ;
GUO, L .
INTERNATIONAL JOURNAL OF CONTROL, 1987, 45 (06) :2183-2202
[2]   Performance analysis of estimation algorithms of nonstationary ARMA processes [J].
Ding, F ;
Shi, Y ;
Chen, TW .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (03) :1041-1053
[3]   Parameter estimation of dual-rate stochastic systems by using an output error method [J].
Ding, F ;
Chen, TW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (09) :1436-1441
[4]   Identification of Hammerstein nonlinear ARMAX systems [J].
Ding, F ;
Chen, TW .
AUTOMATICA, 2005, 41 (09) :1479-1489
[5]   Hierarchical gradient-based identification of multivariable discrete-time systems [J].
Ding, F ;
Chen, TW .
AUTOMATICA, 2005, 41 (02) :315-325
[6]   Hierarchical least squares identification methods for multivariable systems [J].
Ding, F ;
Chen, TW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (03) :397-402
[7]   Performance bounds of forgetting factor least-squares algorithms for time varying systems with finite measurement data [J].
Ding, F ;
Chen, TW .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (03) :555-566
[8]   Combined parameter and output estimation of dual-rate systems using an auxiliary model [J].
Ding, F ;
Chen, TW .
AUTOMATICA, 2004, 40 (10) :1739-1748
[9]  
Ding F., 1996, ACTA AUTOM SIN, V22, P85
[10]  
Ding Feng, 2003, Control Theory & Applications, V20, P870