Cdk9 is an essential kinase in Drosophila that is required for heat shock gene expression, histone methylation and elongation factor recruitment

被引:42
作者
Eissenberg, Joel C.
Shilatifard, Ali
Dorokhov, Nikolay
Michener, Dorian E.
机构
[1] St Louis Univ, Sch Med, Edward A Doisy Dept Biochem & Mol Biol, St Louis, MO 63104 USA
[2] St Louis Univ, Sch Med, Ctr Canc, St Louis, MO 63104 USA
关键词
P-TEFb; Cdk9; CTD phosphorylation; RNA Polymerase II; histone methylation; CHD1; elongation factor; RNA-POLYMERASE-II; P-TEFB KINASE; CARBOXYL-TERMINAL DOMAIN; TRANSCRIPTION ELONGATION; IN-VIVO; PROCESSING FACTORS; SPT5; H3; SET2; METHYLTRANSFERASE;
D O I
10.1007/s00438-006-0164-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phosphorylation of the large RNA Polymerase II subunit C-terminal domain (CTD) is believed to be important in promoter clearance and for recruiting protein factors that function in messenger RNA synthesis and processing. P-TEFb is a protein kinase that targets the (CTD). The goal of this study was to identify chromatin modifications and associations that require P-TEFb activity in vivo. We knocked down the catalytic subunit of P-TEFb, Cdk9, in Drosophila melanogaster using RNA interference. Cdk9 knockdown flies die during metamorphosis. Phosphorylation at serine 2 and serine 5 of the CTD heptad repeat were both dramatically reduced in knockdown larvae. Hsp 70 mRNA induction by heat shock was attenuated in Cdk9 knockdown larvae. Both mono- and trimethylation of histone H3 at lysine 4 were dramatically reduced, suggesting a link between CTD phosphorylation and histone methylation in transcribed chromatin in vivo. Levels of the chromo helicase protein CHD1 were reduced in Cdk9 knockdown chromosomes, suggesting that CHD1 is targeted to chromosomes through P-TEFb-dependent histone methylation. Dimethylation of histone H3 at lysine 36 was significantly reduced in knockdown larvae, implicating CTD phosphorylation in the regulation of this chromatin modification. Binding of the RNA Polymerase II elongation factor ELL was reduced in knockdown chromosomes, suggesting that ELL is recruited to active polymerase via CTD phosphorylation.
引用
收藏
页码:101 / 114
页数:14
相关论文
共 71 条
[1]   Methylation of histone H3 lysine 36 is required for normal development in Neurospora crassa [J].
Adhvaryu, KK ;
Morris, SA ;
Strahl, BD ;
Selker, EU .
EUKARYOTIC CELL, 2005, 4 (08) :1455-1464
[2]   Phosphorylation of serine 2 within the RNA polymerase IIC-terminal domain couples transcription and 3′ end processing [J].
Ahn, SH ;
Kim, M ;
Buratowski, S .
MOLECULAR CELL, 2004, 13 (01) :67-76
[3]   High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo:: roles in promoter proximal pausing and transcription elongation [J].
Andrulis, ED ;
Guzmán, E ;
Döring, P ;
Werner, J ;
Lis, JT .
GENES & DEVELOPMENT, 2000, 14 (20) :2635-2649
[4]   RETRACTED: Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1 (Retracted article. See vol. 521, pg. 110, 2015) [J].
Beisel, C ;
Imhof, A ;
Greene, J ;
Kremmer, E ;
Sauer, F .
NATURE, 2002, 419 (6909) :857-862
[5]   Genome-wide survey of protein kinases required for cell cycle progression [J].
Bettencourt-Dias, M ;
Giet, R ;
Sinka, R ;
Mazumdar, A ;
Lock, WG ;
Balloux, F ;
Zafiropoulos, PJ ;
Yamaguchi, S ;
Winter, S ;
Carthew, RW ;
Cooper, M ;
Jones, D ;
Frenz, L ;
Glover, DM .
NATURE, 2004, 432 (7020) :980-987
[6]   ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3 [J].
Byrd, KN ;
Shearn, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (20) :11535-11540
[7]   Flavopiridol inhibits P-TEFb and blocks HIV-1 replication [J].
Chao, SH ;
Fujinaga, K ;
Marion, JE ;
Taube, R ;
Sausville, EA ;
Senderowicz, AM ;
Peterlin, BM ;
Price, DH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :28345-28348
[8]   Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo [J].
Chao, SH ;
Price, DH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (34) :31793-31799
[9]   dELL is an essential RNA polymerase II elongation factor with a general role in development [J].
Eissenberg, JC ;
Ma, JY ;
Gerber, MA ;
Christensen, A ;
Kennison, JA ;
Shilatifard, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (15) :9894-9899
[10]  
EISSENBERG JC, 2005, STRUCTURE FUNCTION M, P241