Response of renal inner medullary epithelial cells to osmotic stress

被引:37
作者
Burg, MB [1 ]
机构
[1] NHLBI, Kidney & Electrolyte Metab Lab, Bethesda, MD 20892 USA
来源
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY | 2002年 / 133卷 / 03期
关键词
osmotic stress; kidney medulla; hypertonicity; urea; apoptosis; mIMCD3; cells; p53; organic osmolytes;
D O I
10.1016/S1095-6433(02)00203-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As part of the urinary concentrating mechanism, renal inner medullary epithelial (IME) cells are normally exposed to variable and often very high interstitial levels of NaCl and urea, yet they survive and function. We have been studying the mechanisms involved, using an established cell line (mIMCD3). Acute increase of NaCl or urea from 300 to > 500 mOsmol/kg causes cell cycle delay and apoptosis. High NaCl, but not high urea, causes DNA double strand breaks. At 500-600 mOsmol/kg inhibition of DNA replication following high NaCl depends on activation of the tumor suppressor protein, p53, and provides time for DNA repair. If p53 expression is suppressed, cells continue to replicate DNA, and many of those cells die. At higher levels of NaCl (>650 mOsmol/kg) the mitochondria rapidly depolarize and most cells die within a few hours despite a high level of p53 protein (which, however, is less phosphorylated than at 500 mOsmol/kg). Since the levels of NaCl and urea that kill mIMCD3 cells are much lower than those that exist in vivo, we investigated the difference, using early passage mouse IME cells under various conditions. Passage 2 IME cells survive higher levels of NaCl and urea than do mIMCD3 cells, but still not levels as high as in vivo. However, when the osmolality is increased linearly over 20 h, as occurs in vivo, rather than as a single step, cell survival increases to levels close to those found in vivo. We conclude that a more gradual increase in osmolality provides time for accumulation of organic osmolytes and activation of heat shock protein, previously known to be important for cell survival. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:661 / 666
页数:6
相关论文
共 38 条
[1]   Inhibition of Bax channel-forming activity by Bcl-2 [J].
Antonsson, B ;
Conti, F ;
Ciavatta, A ;
Montessuit, S ;
Lewis, S ;
Martinou, I ;
Bernasconi, L ;
Bernard, A ;
Mermod, JJ ;
Mazzei, G ;
Maundrell, K ;
Gambale, F ;
Sadoul, R ;
Martinou, JC .
SCIENCE, 1997, 277 (5324) :370-372
[2]   Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes [J].
Bortner, CD ;
Cidlowski, JA .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1996, 271 (03) :C950-C961
[3]   Molecules in focus -: Bax.: The pro-apoptotic Bcl-2 family member, Bax [J].
Brady, HJM ;
Gil-Gómez, G .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 1998, 30 (06) :647-650
[4]   Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator [J].
Brenner, C ;
Cadiou, H ;
Vieira, HLA ;
Zamzami, N ;
Marzo, I ;
Xie, ZH ;
Leber, B ;
Andrews, D ;
Duclohier, H ;
Reed, JC ;
Kroemer, G .
ONCOGENE, 2000, 19 (03) :329-336
[5]   Renal osmoregulatory transport of compatible organic osmolytes [J].
Burg, MB .
CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION, 1997, 6 (05) :430-433
[6]  
CAI B, IN PRESS RATE INCREA
[7]   IMMEDIATE EARLY GENE AND HSP70 EXPRESSION IN HYPEROSMOTIC STRESS IN MDCK CELLS [J].
COHEN, DM ;
WASSERMAN, JC ;
GULLANS, SR .
AMERICAN JOURNAL OF PHYSIOLOGY, 1991, 261 (04) :C594-C601
[8]   Protection of renal inner medullary epithelial cells from apoptosis by hypertonic stress-induced p53 activation [J].
Dmitrieva, N ;
Kültz, D ;
Michea, L ;
Ferraris, J ;
Burg, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (24) :18243-18247
[9]   p53 Protects renal inner medullary cells from hypertonic stress by restricting DNA replication [J].
Dmitrieva, N ;
Michea, L ;
Burg, M .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2001, 281 (03) :F522-F530
[10]   MAMMALIAN GENES COORDINATELY REGULATED BY GROWTH ARREST SIGNALS AND DNA-DAMAGING AGENTS [J].
FORNACE, AJ ;
NEBERT, DW ;
HOLLANDER, MC ;
LUETHY, JD ;
PAPATHANASIOU, M ;
FARGNOLI, J ;
HOLBROOK, NJ .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (10) :4196-4203