Inverse retinotopy: Inferring the visual content of images from brain activation patterns

被引:221
作者
Thirion, Bertrand
Duchesnay, Edouard
Hubbard, Edward
Dubois, Jessica
Poline, Jean-Baptiste
Lebihan, Denis
Dehaene, Stanislas
机构
[1] INRIA Futurs, Serv Hosp Frederic Joliot, F-91401 Orsay, France
[2] INSERM, Unite ERM 0205, Serv Hosp Frederic Joliot, F-91401 Orsay, France
[3] DSV, CEA, DRM, SHFJ, F-91401 Orsay, France
[4] INSERM, Unite 562 Neuroimagerie Cognit, Serv Hosp Frederic Joliot, F-91401 Orsay, France
关键词
D O I
10.1016/j.neuroimage.2006.06.062
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Traditional inference in neuroimaging consists in describing brain activations elicited and modulated by different kinds of stimuli. Recently, however, paradigms have been studied in which the converse operation is performed, thus inferring behavioral or mental states associated with activation images. Here, we use the well-known retinotopy of the visual cortex to infer the visual content of real or imaginary scenes from the brain activation patterns that they elicit. We present two decoding algorithms: an explicit technique, based on the current knowledge of the retinotopic structure of the visual areas, and an implicit technique, based on supervised classifiers. Both algorithms predicted the stimulus identity with significant accuracy. Furthermore, we extend this principle to mental imagery data: in five data sets, our algorithms could reconstruct and predict with significant accuracy a pattern imagined by the subjects. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1104 / 1116
页数:13
相关论文
共 39 条
[1]  
Ashburner J., 2004, HUMAN BRAIN FUNCTION
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Linear systems analysis of functional magnetic resonance imaging in human V1 [J].
Boynton, GM ;
Engel, SA ;
Glover, GH ;
Heeger, DJ .
JOURNAL OF NEUROSCIENCE, 1996, 16 (13) :4207-4221
[4]  
Carlson TA, 2003, J COGNITIVE NEUROSCI, V15, P704, DOI 10.1162/089892903322307429
[5]   Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex [J].
Cox, DD ;
Savoy, RL .
NEUROIMAGE, 2003, 19 (02) :261-270
[6]   Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection [J].
Davatzikos, C ;
Ruparel, K ;
Fan, Y ;
Shen, DG ;
Acharyya, M ;
Loughead, JW ;
Gur, RC ;
Langleben, DD .
NEUROIMAGE, 2005, 28 (03) :663-668
[7]  
DEHAAN L, 1998, EXTREMES, V1, P7, DOI DOI 10.1023/A:1009909800311
[8]   Mapping striate and extrastriate visual areas in human cerebral cortex [J].
DeYoe, EA ;
Carman, GJ ;
Bandettini, P ;
Glickman, S ;
Wieser, J ;
Cox, R ;
Miller, D ;
Neitz, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (06) :2382-2386
[9]   Visual field representations and locations of visual areas V1/2/3 in human visual cortex [J].
Dougherty, RF ;
Koch, VM ;
Brewer, AA ;
Fischer, B ;
Modersitzki, J ;
Wandell, BA .
JOURNAL OF VISION, 2003, 3 (10) :586-598
[10]   Cortical magnification within human primary visual cortex correlates with acuity thresholds [J].
Duncan, RO ;
Boynton, GM .
NEURON, 2003, 38 (04) :659-671