The triangle method for finding the corner of the L-curve

被引:101
作者
Castellanos, JL [1 ]
Gómez, S [1 ]
Guerra, V [1 ]
机构
[1] Univ Nacl Autonoma Mexico, IIMAS, Mexico City 01000, DF, Mexico
关键词
CG-method; regularization; L-curve; ill-conditioned matrices; systems of linear equations;
D O I
10.1016/S0168-9274(01)00179-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Conjugate Gradient Method (CG) has an intrinsic regularization property when applied to systems of linear equations with ill-conditioned matrices. This regularization property is specially useful when either the right-hand side or the coefficient matrix, or both are given with errors. The regularization parameter is the iteration number, and in order to find this parameter, the L-curve is used. Here we present a novel method to find the corner of the L-curve, that determines the regularizing iteration number. Numerical results on the collection of test problems [SIAM J. Sci. Comput. 16 (1995) 506-512] are given to illustrate the potentiality of the method. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:359 / 373
页数:15
相关论文
共 18 条
[1]  
Bjorck A, 1998, SIAM J MATRIX ANAL A, V19, P720
[2]   Estimation of the L-curve via Lanczos bidiagonalization [J].
Calvetti, D ;
Golub, GH ;
Reichel, L .
BIT NUMERICAL MATHEMATICS, 1999, 39 (04) :603-619
[3]  
CALVETTI D, 2001, IMM20015 TU DENM
[4]  
Engl H., 1996, Mathematics and Its Applications, V375, DOI DOI 10.1007/978-94-009-1740-8
[5]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[6]  
Guerra V, 2001, APPROXIMATION, OPTIMIZATION AND MATHEMATICAL ECONOMICS, P121
[7]  
HANKE M, 1995, RES NOTES MATH SERIE
[8]  
Hansen P., 1998, Rank-Deficient and Discrete Ill-Posed Problems
[9]  
Hansen P. C., 1994, Numerical Algorithms, V6, P1, DOI 10.1007/BF02149761
[10]   TEST MATRICES FOR REGULARIZATION METHODS [J].
HANSEN, PC .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (02) :506-512