Mirror symmetry in three-dimensional gauge theories, quivers and D-branes

被引:179
作者
deBoer, J [1 ]
Hori, K [1 ]
Ooguri, H [1 ]
Oz, Y [1 ]
机构
[1] ERNEST ORLANDO LAWRENCE BERKELEY NATL LAB,THEORET PHYS GRP,BERKELEY,CA 94720
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0550-3213(97)00125-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct and analyze dual N = 4 supersymmetric gauge theories in three dimensions with unitary and symplectic gauge groups. The gauge groups and the field content of the theories are encoded in quiver diagrams. The duality exchanges the Coulomb and Higgs branches and the Fayet-Iliopoulos and mass parameters. We analyze the classical and the quantum moduli spaces of the theories and construct an explicit mirror map between the mass parameters and the Fayet-Iliopoulos parameters of the dual. The results generalize the relation between ALE spaces and moduli spaces of SU(n) and SO(2n) instantons. We interpret some of these results from the string theory viewpoint, for SU(n) by analyzing T-duality and extremal transitions in type II string compactifications, for SO(2n) by using D-branes as probes. Finally, we make a proposal for the moduli space of vacua of these theories in the absence of matter. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:101 / 147
页数:47
相关论文
共 40 条
[1]   The moduli space of vacua of N=2 SUSY QCD and duality in N=1 SUSY QCD [J].
Argyres, PC ;
Plesser, MR ;
Seiberg, N .
NUCLEAR PHYSICS B, 1996, 471 (1-2) :159-194
[2]  
Atiyah M., 1988, GEOMETRY DYNAMICS MA
[3]  
BANKS T, 9605199 HEPTH
[4]  
BERGLUND P, 9605154 HEPTH
[5]  
CHALMERS G, 9608105 HEPTH
[6]   GENERAL SELF-DUAL YANG-MILLS SOLUTIONS [J].
CHRIST, NH ;
WEINBERG, EJ ;
STANTON, NK .
PHYSICAL REVIEW D, 1978, 18 (06) :2013-2025
[7]   NAHM EQUATIONS AND HYPERKAHLER GEOMETRY [J].
DANCER, AS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 158 (03) :545-568
[8]  
DANIELSSON UH, 9603081 HEPTH
[9]  
Donaldon S.K., 1990, OXFORD MATH MONOGRAP
[10]   INSTANTONS AND GEOMETRIC INVARIANT-THEORY [J].
DONALDSON, SK .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (04) :453-460