Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis

被引:543
作者
Rubin, Grit [1 ]
Tohge, Takayuki [1 ]
Matsuda, Fumio [2 ]
Saito, Kazuki [2 ]
Scheible, Wolf-Ruediger [1 ]
机构
[1] Max Planck Inst Mol Plant Physiol, D-14476 Potsdam, Germany
[2] RIKEN Plant Sci Ctr, Tsurumi Ku, Kanagawa, Japan
关键词
AFFINITY NITRATE TRANSPORTER; SUCROSE-SPECIFIC INDUCTION; KNOX GENE-EXPRESSION; LOB DOMAIN PROTEIN; P-I STARVATION; ENZYME-ACTIVITIES; FLAVONOID BIOSYNTHESIS; SECONDARY METABOLISM; UBIQUITIN LIGASE; MYB DOMAIN;
D O I
10.1105/tpc.109.067041
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitrogen (N) and nitrate (NO3-) per se regulate many aspects of plant metabolism, growth, and development. N/NO3- also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO3--induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of each of the three genes in the absence of N/NO3- strongly suppresses the key regulators of anthocyanin synthesis PAP1 and PAP2, genes in the anthocyanin-specific part of flavonoid synthesis, as well as cyanidin-but not quercetin- or kaempferol-glycoside production. Conversely, lbd37, lbd38, or lbd39 mutants accumulate anthocyanins when grown in N/NO3--sufficient conditions and show constitutive expression of anthocyanin biosynthetic genes. The LBD genes also repress many other known N-responsive genes, including key genes required for NO3- uptake and assimilation, resulting in altered NO3- content, nitrate reductase activity/activation, protein, amino acid, and starch levels, and N-related growth phenotypes. The results identify LBD37 and its two close homologs as novel repressors of anthocyanin biosynthesis and N availability signals in general. They also show that, besides being developmental regulators, LBD genes fulfill roles in metabolic regulation.
引用
收藏
页码:3567 / 3584
页数:18
相关论文
共 105 条
[1]   Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome [J].
Addo-Quaye, Charles ;
Eshoo, Tifani W. ;
Bartel, David P. ;
Axtell, Michael J. .
CURRENT BIOLOGY, 2008, 18 (10) :758-762
[2]   Nitrate, a signal relieving seed dormancy in Arabidopsis [J].
Alboresi, A ;
Gestin, C ;
Leydecker, MT ;
Bedu, M ;
Meyer, C ;
Truong, HN .
PLANT CELL AND ENVIRONMENT, 2005, 28 (04) :500-512
[3]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]  
BERNIER G, 1993, PLANT CELL, V5, P1147, DOI 10.1105/tpc.5.10.1147
[6]   Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J].
Borevitz, JO ;
Xia, YJ ;
Blount, J ;
Dixon, RA ;
Lamb, C .
PLANT CELL, 2000, 12 (12) :2383-2393
[7]   Arabidopsis JAGGED LATERAL ORGANS is expressed in boundaries and coordinates KNOX and PIN activity [J].
Borghi, Lorenzo ;
Bureau, Marina ;
Simon, Ruediger .
PLANT CELL, 2007, 19 (06) :1795-1808
[8]   ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize [J].
Bortiri, E ;
Chuck, G ;
Vollbrecht, E ;
Rocheford, T ;
Martienssen, R ;
Hake, S .
PLANT CELL, 2006, 18 (03) :574-585
[9]   Transcriptional control of flavonoid biosynthesis:: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis [J].
Broun, P .
CURRENT OPINION IN PLANT BIOLOGY, 2005, 8 (03) :272-279
[10]  
Byrne ME, 2002, DEVELOPMENT, V129, P1957