Fully nonparametric estimation of scalar diffusion models

被引:196
作者
Bandi, FM
Phillips, PCB
机构
[1] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
[2] Yale Univ, Cowles Fdn Res Econ, New Haven, CT 06520 USA
[3] Univ Auckland, Auckland 1, New Zealand
[4] Univ York, York YO1 5DD, N Yorkshire, England
关键词
diffusion; drift; local time; martingale; nonparametric estimation; semi-martingale; stochastic differential equation;
D O I
10.1111/1468-0262.00395
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a functional estimation procedure for homogeneous stochastic differential equations based on a discrete sample of observations and with minimal requirements on the data generating process. We show how to identify the drift and diffusion function in situations where one or the other function is considered a nuisance parameter. The asymptotic behavior of the estimators is examined as the observation frequency increases and as the time span lengthens. We prove almost sure consistency and weak convergence to mixtures of normal laws, Where the mixing variates depend on the chronological local time of the underlying diffusion process, that is the random time spent by the process in the vicinity of a generic spatial point. The estimation method and asymptotic results apply to both stationary and nonstationary recurrent processes.
引用
收藏
页码:241 / 283
页数:43
相关论文
共 30 条
[1]   Nonparametric pricing of interest rate derivative securities [J].
Ait-Sahalia, Y .
ECONOMETRICA, 1996, 64 (03) :527-560
[2]   Testing continuous-time models of the spot interest rate [J].
Ait-Sahalia, Y .
REVIEW OF FINANCIAL STUDIES, 1996, 9 (02) :385-426
[3]  
AITSAHALIA Y, 1996, ECONOMETRICA, V2, P385
[4]  
[Anonymous], 1998, CONTINUOUS MARTINGAL
[5]   MESURE INVARIANTE SUR LES CLASSES RECURRENTES DES PROCESSUS DE MARKOV [J].
AZEMA, J ;
KAPLANDU.M ;
REVUZ, D .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 8 (03) :157-&
[6]  
BANDI F, 2000, UNPUB FULLY NONPARAM
[7]   Short-term interest rate dynamics: a spatial approach [J].
Bandi, FM .
JOURNAL OF FINANCIAL ECONOMICS, 2002, 65 (01) :73-110
[8]  
Baxter M., 1996, Financial Calculus: An Introduction to Derivative Pricing
[9]   THE HISTORY OF CONTINUOUS-TIME ECONOMETRIC-MODELS [J].
BERGSTROM, AR .
ECONOMETRIC THEORY, 1988, 4 (03) :365-383
[10]  
Billingsley P, 1968, CONVERGE PROBAB MEAS