Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes

被引:115
作者
Porcher, W. [2 ]
Lestriez, B. [1 ]
Jouanneau, S. [2 ]
Guyomard, D. [1 ]
机构
[1] Univ Nantes, CNRS, Inst Mat Jean Rouxel IMN, F-44322 Nantes 3, France
[2] Commissariat Energie Atom, F-38054 Grenoble 9, France
关键词
Lithium battery; Electrode; LiFePO4; Aqueous processing; Formulation; Surfactant; CELL PERFORMANCE; CARBON-BLACK; NEGATIVE ELECTRODES; LICOO2; CATHODES; ION; DISPERSION; ENERGY; BINDER; WATER; ADSORPTION;
D O I
10.1016/j.jpowsour.2009.11.088
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous processing would reduce the costs associated with the making of the composite electrode. To achieve the incorporation and the dispersion of the carbon black (CB) conductive agent in aqueous slurries, a surfactant is needed. In this paper, three surfactants are compared, an anionic one, the sodium dodecyle sulphate (SDS), a non-ionic one, the isooctylphenylether of polyoxyethylene called commercially Triton X-100 and a cationic one, the hexadecyltrimethylammonium bromide (CTAB), by using rheology and laser granulometry measurements on electrode slurries on one hand, and SEM observations, porosity and adhesion measurements and electrochemical testing on composite electrodes on the other hand. Ionic surfactants were found to be not suitable because a corrosion of the aluminium current collector occurred. The utilization of Triton X-100 favoured a more homogeneous CB distribution, resulted in a better electronic wiring of the active material particles and higher rate behavior of the electrode. Optimal electrochemical performances are obtained for an optimal surfactant concentration which depends on the BET surface area of the CB powder. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2835 / 2843
页数:9
相关论文
共 28 条
[1]   Adsorption of cetyltrimethylammonium bromide on carbon black from aqueous solution [J].
Bele, M ;
Kodre, A ;
Arcon, I ;
Grdadolnik, J ;
Pejovnik, S ;
Besenhard, JO .
CARBON, 1998, 36 (7-8) :1207-1212
[2]   Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries [J].
Buqa, H. ;
Holzapfel, M. ;
Krumeich, F. ;
Veit, C. ;
Novak, P. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :617-622
[3]   Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries [J].
Chen, ZH ;
Christensen, L ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (08) :A1073-A1078
[4]  
Creton C, 2002, ADV POLYM SCI, V156, P53
[5]   A novel coating technology for preparation of cathodes in Li-ion batteries [J].
Dominko, R ;
Gaberscek, M ;
Drofenik, J ;
Bele, M ;
Pejovnik, S .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (11) :A187-A190
[6]   Optimized lithium iron phosphate for high-rate electrochemical applications [J].
Franger, S ;
Bourbon, C ;
Le Cras, F .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) :A1024-A1027
[7]   LiFePO4 synthesis routes for enhanced electrochemical performance [J].
Franger, S ;
Le Cras, F ;
Bourbon, C ;
Rouault, H .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (10) :A231-A233
[8]   Electrochemical kinetics of porous, carbon-decorated LiFePO4 cathodes:: separation of wiring effects from solid state diffusion [J].
Gaberscek, Miran ;
Kuzma, Mirjana ;
Jamnik, Janez .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) :1815-1820
[9]   Determination of the free energy of adsorption on carbon blacks of a nonionic surfactant from aqueous solutions [J].
González-García, CM ;
González-Martín, ML ;
Gómez-Serrano, V ;
Bruque, JM ;
Labajos-Broncano, L .
LANGMUIR, 2000, 16 (08) :3950-3956
[10]   LiFePO4 water-soluble binder electrode for Li-ion batteries [J].
Guerfi, A. ;
Kaneko, M. ;
Petitclerc, M. ;
Mori, M. ;
Zaghib, K. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1047-1052