Logarithmic correction to the Bekenstein-Hawking entropy

被引:538
作者
Kaul, RK [1 ]
Majumdar, P [1 ]
机构
[1] Inst Math Sci, Chennai 600113, India
关键词
D O I
10.1103/PhysRevLett.84.5255
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exact formula derived by us earlier for the entropy of a four dimensional nonrotating black hole within the quantum geometry formulation of the event horizon in terms of boundary states of a three dimensional Chern-Simons theory is reexamined for large horizon areas. In addition to the semiclassical Bekenstein-Hawking contribution proportional to the area obtained earlier, we find a contribution proportional to the logarithm of the area together with subleading corrections that constitute a series in inverse powers of the area.
引用
收藏
页码:5255 / 5257
页数:3
相关论文
共 22 条
[1]   Quantum geometry and black hole entropy [J].
Ashtekar, A ;
Baez, J ;
Corichi, A ;
Krasnov, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :904-907
[2]  
ASHTEKAR A, GRQC9910101
[3]  
ASHTEKAR A, COMMUNICATION
[4]  
ASHTEKAR A, GRQC9907068
[5]  
Ashtekar A., 1994, Knots and Quantum Gravity
[6]  
Ashtekar Abhay., 1991, LECT NONPERTURBATIVE
[7]   GENERALIZED MEASURES IN GAUGE-THEORY [J].
BAEZ, JC .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 31 (03) :213-223
[8]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[9]  
DIFRANCESCO P, 1997, CONFORMAL FIELD THEO, P375
[10]   Quantum gravity and Regge calculus [J].
Immirzi, G .
NUCLEAR PHYSICS B, 1997, :65-72