Stimulation of endogenous neurogenesis by anti-EFRH immunization in a transgenic mouse model of Alzheimer's disease

被引:40
作者
Becker, Maria [1 ]
Lavie, Vered [1 ]
Solomon, Beka [1 ]
机构
[1] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Microbiol & Mol Biotechnol, IL-69978 Tel Aviv, Israel
关键词
amyloid beta; immunotherapy; neurodegenerative diseases; platelet-derived amyloid precursor protein transgenic mice;
D O I
10.1073/pnas.0610180104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neurogenesis is a subject of intense interest and extensive research, but it stands at the center of a bitter debate over ethical and practical problems. Neurodegenerative diseases, such as Alzheimer's disease (AD), accompanied by a shifting balance between neurogenesis and neurodegeneration, are suitable for stimulation of neurogenesis for the benefit of diseased patients. We have previously shown that Abs against the EFRH sequence of beta-amyloid peptide (A beta P) prevent aggregation and disaggregate A beta P both in vitro and in vivo. EFRH, located in the soluble tail of the N-terminal region, acts as a regulatory site controlling both solubilization and disaggregation processes in the A beta P molecule. Here we show that anti-EFRH immunotherapy of a platelet-derived amyloid precursor protein transgenic mouse model of AD stimulates endogenous neurogenesis, suggested by elevated numbers of BrdU-incorporated cells, most of which are colocalized with a marker of mature neurons, NeuN. These newly born neurons expressed the activity-dependent gene Zif268, indicating their functional integration and participation in response to synaptic input in the brain. These findings suggest that anti-annyloid immunotherapy may promote recovery from AD or other diseases related to A beta P overproduction and neurotoxicity by restoring neuronal population, as well as cognitive functions in treated patients.
引用
收藏
页码:1691 / 1696
页数:6
相关论文
共 65 条
[1]   Adult neurogenesis: From precursors to network and physiology [J].
Abrous, DN ;
Koehl, M ;
Le Moal, M .
PHYSIOLOGICAL REVIEWS, 2005, 85 (02) :523-569
[2]   Mechanism of migration of olfactory bulb interneurons [J].
AlvarezBuylla, A .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 1997, 8 (02) :207-213
[3]   Neuronal replacement from endogenous precursors in the adult brain after stroke [J].
Arvidsson, A ;
Collin, T ;
Kirik, D ;
Kokaia, Z ;
Lindvall, O .
NATURE MEDICINE, 2002, 8 (09) :963-970
[4]   Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease [J].
Bard, F ;
Cannon, C ;
Barbour, R ;
Burke, RL ;
Games, D ;
Grajeda, H ;
Guido, T ;
Hu, K ;
Huang, JP ;
Johnson-Wood, K ;
Khan, K ;
Kholodenko, D ;
Lee, M ;
Lieberburg, I ;
Motter, R ;
Nguyen, M ;
Soriano, F ;
Vasquez, N ;
Weiss, K ;
Welch, B ;
Seubert, P ;
Schenk, D ;
Yednock, T .
NATURE MEDICINE, 2000, 6 (08) :916-919
[5]   Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice [J].
Bondolfi, L ;
Calhoun, M ;
Ermini, F ;
Kuhn, HG ;
Wiederhold, KH ;
Walker, L ;
Staufenbiel, M ;
Jucker, M .
JOURNAL OF NEUROSCIENCE, 2002, 22 (02) :515-522
[6]   Regulated transcription of the immediate-early gene Zif268:: Mechanisms and gene dosage-dependent function in synaptic plasticity and memory formation [J].
Bozon, B ;
Davis, S ;
Laroche, S .
HIPPOCAMPUS, 2002, 12 (05) :570-577
[7]   DIFFERENTIATION OF NEWLY BORN NEURONS AND GLIA IN THE DENTATE GYRUS OF THE ADULT-RAT [J].
CAMERON, HA ;
WOOLLEY, CS ;
MCEWEN, BS ;
GOULD, E .
NEUROSCIENCE, 1993, 56 (02) :337-344
[8]   Becoming a new neuron in the adult olfactory bulb [J].
Carleton, A ;
Petreanu, LT ;
Lansford, R ;
Alvarez-Buylla, A ;
Lledo, PM .
NATURE NEUROSCIENCE, 2003, 6 (05) :507-518
[9]   Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain [J].
Cooper-Kuhn, CM ;
Kuhn, HG .
DEVELOPMENTAL BRAIN RESEARCH, 2002, 134 (1-2) :13-21
[10]   The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington's disease human brain [J].
Curtis, MA ;
Penney, EB ;
Pearson, J ;
Dragunow, M ;
Connor, B ;
Faull, RLM .
NEUROSCIENCE, 2005, 132 (03) :777-788