Thermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview

被引:22
作者
Sobrino, J. A. [1 ]
Jimenez-Munoz, J. C. [1 ]
Zarco-Tejada, P. J. [2 ]
Sepulcre-Canto, G. [2 ]
de Miguel, E. [3 ]
Soria, G. [1 ]
Romaguera, M. [1 ]
Julien, Y. [1 ]
Cuenca, J. [1 ]
Hidalgo, V. [1 ]
Franch, B. [1 ]
Mattar, C. [1 ]
Morales, L. [4 ]
Gillespie, A. [5 ]
Sabol, D. [5 ]
Balick, L. [6 ]
Su, Z. [7 ]
Jia, L. [8 ]
Gieske, A. [7 ]
Timmermans, W. [7 ]
Olioso, A. [9 ]
Nerry, F. [10 ]
Guanter, L. [11 ]
Moreno, J. [11 ]
Shen, Q. [1 ]
机构
[1] Univ Valencia, Global Change Unit, Image Proc Lab, E-46003 Valencia, Spain
[2] CSIC, Inst Agr Sostenible, Cordoba, Spain
[3] Inst Nacl Tecnia Aeroespacial, Dpto Observac Tierra Teledetecc & Atmosfera, Madrid, Spain
[4] Univ Chile, Fac Ciencias Agron, Dpto Ciencias Ambientales & Recursos Nat, Santiago, Chile
[5] Univ Washington, Dept Earth & Space Sci, WM Keck Remote Sensing Lab, Seattle, WA 98195 USA
[6] Los Alamos Natl Lab, Space & Remote Sensing Sci Grp, Los Alamos, NM USA
[7] Int Inst Geoinformat Sci & Earth Observat ITC, Enschede, Netherlands
[8] Univ Wageningen & Res Ctr, Alterra, Wageningen, Netherlands
[9] INRA, Bioclimatol, Avignon, France
[10] Louis Pasteur Univ, LSIIT TRIO, Illkirch Graffenstaden, France
[11] Univ Valencia, Lab Earth Observat, Image Proc Lab, E-46003 Valencia, Spain
关键词
LAND-SURFACE TEMPERATURE; ALGORITHM; EVAPOTRANSPIRATION;
D O I
10.5194/hess-13-2031-2009
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The AHS (Airborne Hyperspectral Scanner) instrument has 80 spectral bands covering the visible and near infrared (VNIR), short wave infrared (SWIR), mid infrared (MIR) and thermal infrared (TIR) spectral range. The instrument is operated by Instituto Nacional de T,cnica Aerospacial (INTA), and it has been involved in several field campaigns since 2004. This paper presents an overview of the work performed with the AHS thermal imagery provided in the framework of the SPARC and SEN2FLEX campaigns, carried out respectively in 2004 and 2005 over an agricultural area in Spain. The data collected in both campaigns allowed for the first time the development and testing of algorithms for land surface temperature and emissivity retrieval as well as the estimation of evapotranspiration from AHS data. Errors were found to be around 1.5 K for land surface temperature and 1 mm/day for evapotranspiration.
引用
收藏
页码:2031 / 2037
页数:7
相关论文
共 17 条
[1]   Remote sensing for irrigated agriculture: examples from research and possible applications [J].
Bastiaanssen, WGM ;
Molden, DJ ;
Makin, IW .
AGRICULTURAL WATER MANAGEMENT, 2000, 46 (02) :137-155
[2]   A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images [J].
Gillespie, A ;
Rokugawa, S ;
Matsunaga, T ;
Cothern, JS ;
Hook, S ;
Kahle, AB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (04) :1113-1126
[3]   Retrieval of evapotranspiration over the alpilles/ReSeDA experimental site using airborne POLDER sensor and a thermal camera [J].
Gómez, M ;
Olioso, A ;
Sobrino, JA ;
Jacob, F .
REMOTE SENSING OF ENVIRONMENT, 2005, 96 (3-4) :399-408
[4]  
GUANTER L, 2005, P SPARC ENSCH HOLL 4
[5]  
JIMENEZ M, 2007, 10 INT S PHYS MEAS S
[6]   A generalized single-channel method for retrieving land surface temperature from remote sensing data -: art. no. 4688 [J].
Jiménez-Muñoz, JC ;
Sobrino, JA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D22)
[7]  
Kerr YH, 2004, THERMAL REMOTE SENSING IN LAND SURFACE PROCESSES, P33
[8]  
Moreno J, 2001, ESA SPEC PUBL, V499, P43
[9]  
MORENO J.F., 2004, P 2 CHRIS PROBA WORK
[10]   A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region [J].
Qin, Z ;
Karnieli, A ;
Berliner, P .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2001, 22 (18) :3719-3746