Structure-based thermodynamic analysis of HIV-1 protease inhibitors

被引:66
作者
Bardi, JS
Luque, I
Freire, E
机构
[1] JOHNS HOPKINS UNIV,DEPT BIOL,BALTIMORE,MD 21218
[2] JOHNS HOPKINS UNIV,CTR BIOCALORIMETRY,BALTIMORE,MD 21218
关键词
D O I
10.1021/bi9701742
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A structural parametrization of the binding and folding energetics previously developed in this laboratory accounts quantitatively for the binding of 13 HIV-1 protease inhibitors for which high-resolution structures are available (A77003, A78791, A76928, A74704, A76889, VX478, SB203386, SB203238, SB206343, U100313, U89360, A98881, CGP53820). The binding free energies for the inhibitors are predicted with a standard deviation of +/-1.1 kcal/mol or +/-10%. Furthermore, the formalism correctly predicts the observed change in inhibition constant for the complex of A77003 and the resistant protease mutant V82A, for which the high-resolution structure is also available. The analysis presented here provides a structural mapping of the different contributions to the binding energetics. Comparison of the binding map with the residue stability map indicates that the binding pocket in the protease molecule has a dual character: half of the binding site is defined by the most stable region of the protein, while the other half is unstructured prior to inhibitor or substrate binding. This characteristic of the binding site accentuates cooperative effects that permit mutations in distal residues to have a significant effect on binding affinity. These results permit an initial assessment of the effects of mutations on the activity of protease inhibitors.
引用
收藏
页码:6588 / 6596
页数:9
相关论文
共 43 条
[1]   AN ORALLY BIOAVAILABLE HIV-1 PROTEASE INHIBITOR CONTAINING AN IMIDAZOLE-DERIVED PEPTIDE-BOND REPLACEMENT - CRYSTALLOGRAPHIC AND PHARMACOKINETIC ANALYSIS [J].
ABDELMEGUID, SS ;
METCALF, BW ;
CARR, TJ ;
DEMARSH, P ;
DESJARLAIS, RL ;
FISHER, S ;
GREEN, DW ;
IVANOFF, L ;
LAMBERT, DM ;
MURTHY, KHM ;
PETTEWAY, SR ;
PITTS, WJ ;
TOMASZEK, TA ;
WINBORNE, E ;
ZHAO, BG ;
DREYER, GB ;
MEEK, TD .
BIOCHEMISTRY, 1994, 33 (39) :11671-11677
[2]   STRUCTURAL BASIS OF DRUG-RESISTANCE FOR THE V82A MUTANT OF HIV-1 PROTEINASE [J].
BALDWIN, ET ;
BHAT, TN ;
LIU, BS ;
PATTABIRAMAN, N ;
ERICKSON, JW .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (03) :244-249
[4]   GROUP CONTRIBUTIONS TO THE THERMODYNAMIC PROPERTIES OF NON-IONIC ORGANIC SOLUTES IN DILUTE AQUEOUS-SOLUTION [J].
CABANI, S ;
GIANNI, P ;
MOLLICA, V ;
LEPORI, L .
JOURNAL OF SOLUTION CHEMISTRY, 1981, 10 (08) :563-595
[5]   IN-VIVO EMERGENCE OF HIV-1 VARIANTS RESISTANT TO MULTIPLE PROTEASE INHIBITORS [J].
CONDRA, JH ;
SCHLEIF, WA ;
BLAHY, OM ;
GABRYELSKI, LJ ;
GRAHAM, DJ ;
QUINTERO, JC ;
RHODES, A ;
ROBBINS, HL ;
ROTH, E ;
SHIVAPRAKASH, M ;
TITUS, D ;
YANG, T ;
TEPPLER, H ;
SQUIRES, KE ;
DEUTSCH, PJ ;
EMINI, EA .
NATURE, 1995, 374 (6522) :569-571
[6]   The magnitude of the backbone conformational entropy change in protein folding [J].
DAquino, JA ;
Gomez, J ;
Hilser, VJ ;
Lee, KH ;
Amzel, LM ;
Freire, E .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1996, 25 (02) :143-156
[7]   DESIGN, ACTIVITY, AND 2.8 A CRYSTAL-STRUCTURE OF A C2 SYMMETRICAL INHIBITOR COMPLEXED TO HIV-1 PROTEASE [J].
ERICKSON, J ;
NEIDHART, DJ ;
VANDRIE, J ;
KEMPF, DJ ;
WANG, XC ;
NORBECK, DW ;
PLATTNER, JJ ;
RITTENHOUSE, JW ;
TURON, M ;
WIDEBURG, N ;
KOHLBRENNER, WE ;
SIMMER, R ;
HELFRICH, R ;
PAUL, DA ;
KNIGGE, M .
SCIENCE, 1990, 249 (4968) :527-533
[8]  
FASSLER A, 1993, BIOORG MED CHEM LETT, V3, P2817
[9]  
GarciaMoreno B, 1995, METHOD ENZYMOL, V259, P512
[10]  
GARCIAMORENO BE, 1997, IN PRESS BIOPHYS CHE