Site-directed mutations of the 4Fe-Ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus: Role of the cluster-coordinating aspartate in physiological electron transfer reactions

被引:38
作者
Zhou, ZH
Adams, MWW
机构
[1] UNIV GEORGIA,DEPT BIOCHEM & MOL BIOL,ATHENS,GA 30602
[2] UNIV GEORGIA,CTR METALLOENZYME STUDIES,ATHENS,GA 30602
关键词
D O I
10.1021/bi9708141
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus is a monomeric protein (7.5 KDa) that contains a single [4Fe-4S](+,2+) cluster. The protein is unusual in that its cluster is coordinated by three Cys and one Asp residue, rather than by the typical four Cys residues. Site-directed mutagenesis has been used to obtain mutant forms in which the cluster-coordinating Asp was replaced by Cys (D14C) and also by Ser (D14S), together with a third mutant (A1K) which contained N-Met-Lys at the N-terminus instead of N-Ala. Analyses using UV-visible absorption, far-UV circular dichroism, and EPR spectroscopy showed that there were no gross structural differences between the native and the three mutant forms and that they each contained a [4Fe-4S] cluster. The reduction potentials, determined by direct electrochemistry (at 23 degrees C, pH 8.0), of the D14S, D14C, and A1K mutants were -490, -422, and -382 mV, respectively, which compare with values of -375 mV for native [4Fe-4S]-containing ferredoxin and -160 mV for the [3Fe-4S]-containing form. The native, D14C, and A1K proteins functioned as electron accepters in vitro at 80 degrees C for pyruvate ferredoxin oxidoreductase (POR) and aldehyde ferredoxin oxidoreductase (AOR) from P. furiosus using pyruvate and crotonaldehyde as substrates, respectively. The calculated k(cat)/K-M values were similar fur the three proteins when ferredoxin reduction was measured either directly by visible absorption or indirectly by coupling ferredoxin reoxidation to the reduction of metronidazole. In contrast, using the D14S mutant and the 3Fe-form of the native ferredoxin as electron accepters, the activity with AOR was virtually undetectable, and with POR the calculated k(cat)/K-M values were at least 3-fold lower than those obtained with the native (4Fe-), D14C, and A1K proteins. The ability of this 4Fe-ferredoxin to accept electrons from two oxidoreductases of the same organism is therefore not absolutely dependent upon Asp14, as this residue can be effectively replaced by Cys. However, the efficiency of electron transfer is compromised if Asp14 is replaced by Ser, or if the 4Fe-cluster is converted to the 3Fe-form, but Asp14, does not appear to offer any kinetic advantage over the expected Cys.
引用
收藏
页码:10892 / 10900
页数:9
相关论文
共 64 条
[1]  
Adams MWW, 1996, ADV PROTEIN CHEM, V48, P101
[2]   NOVEL IRON-SULFUR CENTERS IN METALLOENZYMES AND REDOX PROTEINS FROM EXTREMELY THERMOPHILIC BACTERIA [J].
ADAMS, MWW .
ADVANCES IN INORGANIC CHEMISTRY, 1992, 38 :341-396
[3]   THE STRUCTURE AND MECHANISM OF IRON-HYDROGENASES [J].
ADAMS, MWW .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1020 (02) :115-145
[4]   A NOVEL AND REMARKABLY THERMOSTABLE FERREDOXIN FROM THE HYPERTHERMOPHILIC ARCHAEBACTERIUM PYROCOCCUS-FURIOSUS [J].
AONO, S ;
BRYANT, FO ;
ADAMS, MWW .
JOURNAL OF BACTERIOLOGY, 1989, 171 (06) :3433-3439
[5]   SITE-DIRECTED MUTAGENESIS OF CONSERVED CYSTEINE RESIDUES WITHIN THE BETA-SUBUNIT OF ESCHERICHIA-COLI NITRATE REDUCTASE - PHYSIOLOGICAL, BIOCHEMICAL, AND EPR CHARACTERIZATION OF THE MUTATED ENZYMES [J].
AUGIER, V ;
GUIGLIARELLI, B ;
ASSO, M ;
BERTRAND, P ;
FRIXON, C ;
GIORDANO, G ;
CHIPPAUX, M ;
BLASCO, F .
BIOCHEMISTRY, 1993, 32 (08) :2013-2023
[6]   REMOVAL OF THE HIGH-POTENTIAL [4FE-4S] CENTER OF THE BETA-SUBUNIT FROM ESCHERICHIA-COLI NITRATE REDUCTASE - PHYSIOLOGICAL, BIOCHEMICAL, AND EPR CHARACTERIZATION OF SITE-DIRECTED MUTATED ENZYMES [J].
AUGIER, V ;
ASSO, M ;
GUIGLIARELLI, B ;
MORE, C ;
BERTRAND, P ;
SANTINI, CL ;
BLASCO, F ;
CHIPPAUX, M ;
GIORDANO, G .
BIOCHEMISTRY, 1993, 32 (19) :5099-5108
[7]  
BARD AJ, 1984, ELECTROCHEMICAL METH, P232
[8]   3-IRON CLUSTERS IN IRON SULFUR PROTEINS [J].
BEINERT, H ;
THOMSON, AJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1983, 222 (02) :333-361
[9]   PURIFICATION AND CHARACTERIZATION OF PYRUVATE FERREDOXIN OXIDOREDUCTASE FROM THE HYPERTHERMOPHILIC ARCHAEON PYROCOCCUS-FURIOSUS [J].
BLAMEY, JM ;
ADAMS, MWW .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1161 (01) :19-27
[10]  
BRANDT ME, 1993, J BIOL CHEM, V268, P17126