Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes

被引:262
作者
Jang, Soojin [1 ]
Imlay, James A. [1 ]
机构
[1] Univ Illinois, Dept Microbiol, Urbana, IL 61801 USA
关键词
D O I
10.1074/jbc.M607646200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An Escherichia coli strain that cannot scavenge hydrogen peroxide has been used to identify the cell processes that are most sensitive to this oxidant. Low micromolar concentrations of H2O2 completely blocked the biosynthesis of leucine. The defect was tracked to the inactivation of isopropylmalate isomerase. This enzyme belongs to a family of [4Fe-4S] dehydratases that are notoriously sensitive to univalent oxidation, and experiments confirmed that other members were also inactivated. In vitro and in vivo analyses showed that H2O2 directly oxidized their solvent-exposed clusters in a Fenton-like reaction. The oxidized cluster then degraded to a catalytically inactive [3Fe-4S] form. Experiments indicated that H2O2 accepted two consecutive electrons during the oxidation event. As a consequence, hydroxyl radicals were not released; the polypeptide was undamaged; and the enzyme was competent for reactivation by repair processes. Strikingly, in scavenger-deficient mutants, the H2O2 that was generated as an adventitious by-product of metabolism (< 1 mu M) was sufficient to damage these [4Fe-4S] enzymes. This result demonstrates that aerobic organisms must synthesize H2O2 scavengers to avoid poisoning their own pathways. The extreme vulnerability of these enzymes may explain why many organisms, including mammals, deploy H2O2 to suppress microbial growth.
引用
收藏
页码:929 / 937
页数:9
相关论文
共 46 条
[1]   A NOVEL DNA-BINDING PROTEIN WITH REGULATORY AND PROTECTIVE ROLES IN STARVED ESCHERICHIA-COLI [J].
ALMIRON, M ;
LINK, AJ ;
FURLONG, D ;
KOLTER, R .
GENES & DEVELOPMENT, 1992, 6 (12B) :2646-2654
[2]   THE DPS PROMOTER IS ACTIVATED BY OXYR DURING GROWTH AND BY IHF AND A SIGMA(S) IN STATIONARY-PHASE [J].
ALTUVIA, S ;
ALMIRON, M ;
HUISMAN, G ;
KOLTER, R ;
STORZ, G .
MOLECULAR MICROBIOLOGY, 1994, 13 (02) :265-272
[3]   Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol -: disulfide status [J].
Åslund, F ;
Zheng, M ;
Beckwith, J ;
Storz, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6161-6165
[4]   Detection of a [3Fe-4S] cluster intermediate of cytosolic aconitase in yeast expressing iron regulatory protein 1 - Insights into the mechanism of Fe-S cluster cycling [J].
Brown, NM ;
Kennedy, MC ;
Antholine, WE ;
Eisenstein, RS ;
Walden, WE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (09) :7246-7254
[5]   GENE DISRUPTION IN ESCHERICHIA-COLI - TCR AND KM(R) CASSETTES WITH THE OPTION OF FLP-CATALYZED EXCISION OF THE ANTIBIOTIC-RESISTANCE DETERMINANT [J].
CHEREPANOV, PP ;
WACKERNAGEL, W .
GENE, 1995, 158 (01) :9-14
[6]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[7]   Repair of oxidized iron-sulfur clusters in Escherichia coli [J].
Djaman, O ;
Outten, FW ;
Imlay, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (43) :44590-44599
[8]   FUMARASE-A FROM ESCHERICHIA-COLI - PURIFICATION AND CHARACTERIZATION AS AN IRON SULFUR CLUSTER CONTAINING ENZYME [J].
FLINT, DH ;
EMPTAGE, MH ;
GUEST, JR .
BIOCHEMISTRY, 1992, 31 (42) :10331-10337
[9]  
FLINT DH, 1993, J BIOL CHEM, V268, P22369
[10]   INITIAL KINETIC AND MECHANISTIC CHARACTERIZATION OF ESCHERICHIA-COLI FUMARASE-A [J].
FLINT, DH .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1994, 311 (02) :509-516