Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a

被引:260
作者
Takeda, K
Yasumoto, K
Takada, R
Takada, S
Watanabe, K
Udono, T
Saito, H
Takahashi, K
Shibahara, S [1 ]
机构
[1] Tohoku Univ, Sch Med, Dept Mol Biol & Appl Physiol, Aoba Ku, Sendai, Miyagi 9808575, Japan
[2] Japan Sci & Technol Corp, ERATO, Kondoh Differentiat Signaling Project, Sakyo Ku, Kyoto 6068305, Japan
[3] Kyoto Univ, Grad Sch Sci, Ctr Mol & Dev Biol, Sakyo Ku, Kyoto 6068502, Japan
关键词
D O I
10.1074/jbc.C000113200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microphthalmia-associated transcription factor (Mitf) plays a critical role in the development of neural crest-derived melanocytes. Here, we show that exogenously added Wnt-3a protein, an intercellular signaling molecule, up-regulates the expression of endogenous melanocyte-specific Mitf (Mitf-M) mRNA in cultured melanocytes. The melanocyte-specific promoter of the human MITF gene (MITF-M promoter) contains a functional LEF-1-binding site, which is bound in vitro by LEF-1 and confers the preferential expression on a reporter gene in melanocytes and melanoma cells, as judged by the transient transfection assays. Moreover, the LEF-1-binding site is required for the transactivation of a reporter gene by LEF-1, beta-catenin, or their combination. Exogenously added Wnt-3a protein also transactivates the MITF-M promoter via the LEF-1-binding site; this activation was abolished when a dominant-negative form of LEF-1 was coexpressed. These results suggest that Wnt-3a signaling recruits beta-catenin and LEF-1 to the LEF-1-binding site of the MITF-M promoter. Therefore, the present study identifies Mitf-M/MITF-M as a direct target of Wnt signaling.
引用
收藏
页码:14013 / 14016
页数:4
相关论文
共 38 条
[1]   Targeting the microphthalmia basic helix-loop-helix leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo [J].
Aksan, I ;
Goding, CR .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (12) :6930-6938
[2]   Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium [J].
Amae, S ;
Fuse, N ;
Yasumoto, K ;
Sato, S ;
Yajima, I ;
Yamamoto, H ;
Udono, T ;
Durlu, YK ;
Tamai, M ;
Takahashi, K ;
Shibahara, S .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 247 (03) :710-715
[3]   A LINE OF NONTUMORIGENIC MOUSE MELANOCYTES, SYNGENEIC WITH THE B-16 MELANOMA AND REQUIRING A TUMOR PROMOTER FOR GROWTH [J].
BENNETT, DC ;
COOPER, PJ ;
HART, IR .
INTERNATIONAL JOURNAL OF CANCER, 1987, 39 (03) :414-418
[4]   MELANOCYTE-SPECIFIC EXPRESSION OF THE HUMAN TYROSINASE PROMOTER - ACTIVATION BY THE MICROPHTHALMIA GENE-PRODUCT AND ROLE OF THE INITIATOR [J].
BENTLEY, NJ ;
EISEN, T ;
GODING, CR .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (12) :7996-8006
[5]   Wnt signaling: a common theme in animal development [J].
Cadigan, KM ;
Nusse, R .
GENES & DEVELOPMENT, 1997, 11 (24) :3286-3305
[6]   Control of neural crest cell fate by the Wnt signalling pathway [J].
Dorsky, RI ;
Moon, RT ;
Raible, DW .
NATURE, 1998, 396 (6709) :370-373
[7]  
Dorsky RI, 2000, GENE DEV, V14, P158
[8]   Regulation of LEF-1/TCF transcription factors by Wnt and other signals [J].
Eastman, Q ;
Grosschedl, R .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (02) :233-240
[9]  
ERCOLANI L, 1988, J BIOL CHEM, V263, P15335
[10]   Molecular cloning of cDNA encoding a novel microphthalmia-associated transcription factor isoform with a distinct amino-terminus [J].
Fuse, N ;
Yasumoto, K ;
Takeda, K ;
Amae, S ;
Yoshizawa, M ;
Udono, T ;
Takahashi, K ;
Tamai, M ;
Tomita, Y ;
Tachibana, M ;
Shibahara, S .
JOURNAL OF BIOCHEMISTRY, 1999, 126 (06) :1043-1051