The formation of secondary organic aerosol from the isoprene plus OH reaction in the absence of NOx

被引:88
作者
Kleindienst, T. E. [1 ]
Lewandowski, M. [1 ]
Offenberg, J. H. [1 ]
Jaoui, M. [2 ]
Edney, E. O. [1 ]
机构
[1] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA
[2] Alion Sci & Technol, Res Triangle Pk, NC 27709 USA
关键词
PHASE OXIDATION-PRODUCTS; EASTERN UNITED-STATES; MASS-SPECTROMETRY; PEROXY-RADICALS; INITIATED OXIDATION; HYDROXYL-GROUPS; AMBIENT PM2.5; PHOTOOXIDATION; QUANTIFICATION; HYDROCARBONS;
D O I
10.5194/acp-9-6541-2009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The reaction of isoprene (C5H8) with hydroxyl radicals has been studied in the absence of nitrogen oxides (NOx) to determine physical and chemical characteristics of the secondary organic aerosol formed. Experiments were conducted using a smog chamber operated in a steady-state mode permitting measurements of moderately low aerosol levels. GC-MS analysis was conducted to measure methyl butenediols in the gas phase and polyols in the aerosol phase. Analyses were made to obtain several bulk aerosol parameters from the reaction including values for the organic mass to organic carbon ratio, the effective enthalpy of vaporization (Delta H-vap(eff)), organic peroxide fraction, and the aerosol yield. The gas phase analysis showed the presence of methacrolein, methyl vinyl ketone, and four isomers of the methyl butenediols. These gas-phase compounds may serve as precursors for one or more of several compounds detected in the aerosol phase including 2-methylglyceric acid, three 2-methyl alkenetriols, and two 2-methyl tetrols. In contrast to most previous studies, the 2-methyl tetrols (and the 2-methyl alkenetriols) were found to form in the absence of acidic sulfate aerosol. However, reaction conditions did not favor the production of HO2 radicals, thus allowing RO2+RO2 reactions to proceed more readily than if higher HO2 levels had been generated. SOA/SOC (i.e. OM/OC) was found to average 1.9 in the absence of NOx. The effective enthalpy of vaporization was measured as 38.6 kJ mol(-1), consistent with values used previously in modeling studies. The yields in this work (using an independent technique than used previously) are lower than those of Kroll et al. (2006) for similar aerosol masses. SOC yields reported in this work range from 0.5-1.4% for carbon masses between 17 and 49 mu gC m(-3).
引用
收藏
页码:6541 / 6558
页数:18
相关论文
共 57 条
[1]   O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry [J].
Aiken, Allison C. ;
Decarlo, Peter F. ;
Kroll, Jesse H. ;
Worsnop, Douglas R. ;
Huffman, J. Alex ;
Docherty, Kenneth S. ;
Ulbrich, Ingrid M. ;
Mohr, Claudia ;
Kimmel, Joel R. ;
Sueper, Donna ;
Sun, Yele ;
Zhang, Qi ;
Trimborn, Achim ;
Northway, Megan ;
Ziemann, Paul J. ;
Canagaratna, Manjula R. ;
Onasch, Timothy B. ;
Alfarra, M. Rami ;
Prevot, Andre S. H. ;
Dommen, Josef ;
Duplissy, Jonathan ;
Metzger, Axel ;
Baltensperger, Urs ;
Jimenez, Jose L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (12) :4478-4485
[2]   The characterisation of secondary organic aerosol formed during the photodecomposition of 1,3-butadiene in air containing nitric oxide [J].
Angove, D. E. ;
Fookes, C. J. R. ;
Hynes, R. G. ;
Walters, C. K. ;
Azzi, M. .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (24) :4597-4607
[3]   FTIR PRODUCT STUDY OF THE SELF-REACTION OF BETA-HYDROXYETHYL PEROXY-RADICALS [J].
BARNES, I ;
BECKER, KH ;
RUPPERT, L .
CHEMICAL PHYSICS LETTERS, 1993, 203 (2-3) :295-301
[4]   Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust [J].
Birch, ME ;
Cary, RA .
AEROSOL SCIENCE AND TECHNOLOGY, 1996, 25 (03) :221-241
[5]   Formation of secondary organic particle phase compounds from isoprene gas-phase oxidation products:: An aerosol chamber and field study [J].
Böge, O ;
Miao, Y ;
Plewka, A ;
Herrmann, H .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (14) :2501-2509
[6]  
Carter WPL, 1996, INT J CHEM KINET, V28, P497, DOI 10.1002/(SICI)1097-4601(1996)28:7<497::AID-KIN4>3.0.CO
[7]  
2-Q
[8]   Global distribution and climate forcing of carbonaceous aerosols [J].
Chung, SH ;
Seinfeld, JH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D19) :AAC14-1
[9]   Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide [J].
Claeys, M ;
Wang, W ;
Ion, AC ;
Kourtchev, I ;
Gelencsér, A ;
Maenhaut, W .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (25) :4093-4098
[10]   Formation of secondary organic aerosols through photooxidation of isoprene [J].
Claeys, M ;
Graham, B ;
Vas, G ;
Wang, W ;
Vermeylen, R ;
Pashynska, V ;
Cafmeyer, J ;
Guyon, P ;
Andreae, MO ;
Artaxo, P ;
Maenhaut, W .
SCIENCE, 2004, 303 (5661) :1173-1176