Wada dye boundaries in open hydrodynamical flows

被引:44
作者
Toroczkai, Z
Karolyi, G
Pentek, A
Tel, T
Grebogi, C
Yorke, JA
机构
[1] UNIV CALIF SAN DIEGO, INST PURE & APPL PHYS SCI, LA JOLLA, CA 92093 USA
[2] TECH UNIV BUDAPEST, RES GRP COMPUTAT MECH, H-1521 BUDAPEST, HUNGARY
[3] EOTVOS LORAND UNIV, INST THEORET PHYS, H-1088 BUDAPEST, HUNGARY
[4] UNIV MARYLAND, DEPT MATH, COLLEGE PK, MD 20742 USA
[5] UNIV MARYLAND, INST PHYS SCI & TECHNOL, COLLEGE PK, MD 20742 USA
[6] VIRGINIA POLYTECH INST & STATE UNIV, DEPT PHYS, BLACKSBURG, VA 24061 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0378-4371(96)00482-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dyes of different colors advected by two-dimensional flaws which are asymptotically simple can form a fractal boundary that coincides with a chaotic saddle's unstable manifold. We show that such dye boundaries can have the Wada property: every boundary point of a given color on this fractal set is on the boundary of at feast two other colors. The condition for this is the nonempty intersection of the saddle's stable manifold with at least three differently colored domains in the asymptotic inflow region.
引用
收藏
页码:235 / 243
页数:9
相关论文
共 18 条
[1]   VORTICES, KINEMATICS AND CHAOS [J].
AREF, H ;
JONES, SW ;
MOFINA, S ;
ZAWADZKI, I .
PHYSICA D, 1989, 37 (1-3) :423-440
[2]   HAMILTONIAN SCATTERING CHAOS IN A HYDRODYNAMICAL SYSTEM [J].
JUNG, C ;
ZIEMNIAK, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (14) :3929-3943
[3]   Application of scattering chaos to particle transport in a hydrodynamical flow [J].
Jung, C. ;
Tel, T. ;
Ziemniak, E. .
CHAOS, 1993, 3 (04) :555-568
[4]   BASINS OF WADA [J].
KENNEDY, J ;
YORKE, JA .
PHYSICA D, 1991, 51 (1-3) :213-225
[5]  
KENNEDY J, 1995, TOPOLOGY STIRRED FLU
[6]  
Novak M.M., 1994, Fractals in the Natural and Applied Sciences, VVolume IFIP (A-41)
[7]   Wada basin boundaries and basin cells [J].
Nusse, HE ;
Yorke, JA .
PHYSICA D, 1996, 90 (03) :242-261
[8]   Basins of attraction [J].
Nusse, HE ;
Yorke, JA .
SCIENCE, 1996, 271 (5254) :1376-1380
[9]   SADDLE-NODE BIFURCATIONS ON FRACTAL BASIN BOUNDARIES [J].
NUSSE, HE ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1995, 75 (13) :2482-2485
[10]  
Ottino J. M., 1989, KINEMATICS MIXING ST