Depletion Effects Massively Change Chromatin Properties and Influence Genome Folding

被引:26
作者
Diesinger, Philipp M. [1 ]
Heermann, Dieter W. [1 ,2 ,3 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Heidelberg, Germany
[2] Heidelberg Univ, Interdisziplinares Zentrum Wissensch Rechnen, Heidelberg, Germany
[3] Jackson Lab, Inst Mol Biophys, Bar Harbor, ME 04609 USA
关键词
NUCLEOSOME CORE PARTICLE; DNA; SEQUENCE; MODEL; ACCESSIBILITY; ORGANIZATION; COMPACTION; FILAMENT; FIBERS;
D O I
10.1016/j.bpj.2009.06.057
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We present a Monte Carlo model for genome folding at the 30-nm scale with focus on linker-histone and nucleosome depletion effects. We find that parameter distributions from experimental data do not lead to one specific chromatin fiber structure, but instead to a distribution of structures in the chromatin phase diagram. Depletion of linker histones and nucleosomes affects, massively, the flexibility and the extension of chromatin fibers. Increasing the amount of nucleosome skips (i.e., nucleosome depletion) can lead either to a collapse or to a swelling of chromatin fibers. These opposing effects are discussed and we show that depletion effects may even contribute to chromatin compaction. Furthermore, we find that predictions from experimental data for the average nucleosome skip rate lie exactly in the regime of maximum chromatin compaction. Finally, we determine the pair distribution function of chromatin. This function reflects the structure of the fiber, and its Fourier-transform can be measured experimentally. Our calculations show that even in the case of fibers with depletion effects, the main dominant peaks (characterizing the structure and the length scales) can still be identified.
引用
收藏
页码:2146 / 2153
页数:8
相关论文
共 40 条
[1]   Poly(dA-dT) promoter elements increase the equilibrium accessibility of nucleosomal DNA target sites [J].
Anderson, JD ;
Widom, J .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (11) :3830-3839
[2]   Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin [J].
Bednar, J ;
Horowitz, RA ;
Grigoryev, SA ;
Carruthers, LM ;
Hansen, JC ;
Koster, AJ ;
Woodcock, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (24) :14173-14178
[3]   CHROMATIN CONFORMATION AND SALT-INDUCED COMPACTION - 3-DIMENSIONAL STRUCTURAL INFORMATION FROM CRYOELECTRON MICROSCOPY [J].
BEDNAR, J ;
HOROWITZ, RA ;
DUBOCHET, J ;
WOODCOCK, CL .
JOURNAL OF CELL BIOLOGY, 1995, 131 (06) :1365-1376
[4]  
BINDER K, 2002, MONTE CARLO METHOD S
[5]   Structure and dynamic properties of nucleosome core particles [J].
Chakravarthy, S ;
Park, YJ ;
Chodaparambil, J ;
Edayathumangalam, RS ;
Luger, K .
FEBS LETTERS, 2005, 579 (04) :895-898
[6]   Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution [J].
Davey, CA ;
Sargent, DF ;
Luger, K ;
Maeder, AW ;
Richmond, TJ .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 319 (05) :1097-1113
[7]   The influence of the cylindrical shape of the nucleosomes and H1 defects on properties of chromatin [J].
Diesinger, Philipp M. ;
Heermann, Dieter W. .
BIOPHYSICAL JOURNAL, 2008, 94 (11) :4165-4172
[8]   Two-angle model and phase diagram for chromatin [J].
Diesinger, Philipp M. ;
Heermann, Dieter W. .
PHYSICAL REVIEW E, 2006, 74 (03)
[9]   Nucleosome arrays reveal the two-start organization of the chromatin fiber [J].
Dorigo, B ;
Schalch, T ;
Kulangara, A ;
Duda, S ;
Schroeder, RR ;
Richmond, TJ .
SCIENCE, 2004, 306 (5701) :1571-1573
[10]   SOLENOIDAL MODEL FOR SUPERSTRUCTURE IN CHROMATIN [J].
FINCH, JT ;
KLUG, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (06) :1897-1901