Feasibility study for downscaling seasonal tropical cyclone activity using the NCEP regional spectral model

被引:34
作者
Camargo, Suzana J. [1 ]
Li, Huilan [1 ]
Sun, Liqiang [1 ]
机构
[1] Columbia Univ, Earth Inst, Int Res Inst Climate & Soc, Palisades, NY USA
关键词
tropical cyclones; typhoons; regional climate models; seasonal forecasts; western North Pacific;
D O I
10.1002/joc.1400
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The potential use of the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) for downscaling seasonal tropical cyclone (TC) activity was analyzed here. The NCEP RSM with horizontal resolution of 50 km, was used to downscale the ECHAM4.5 Atmospheric General Circulation Model (AGCM) simulations forced with observed sea surface temperature (SST) over the western North Pacific. An ensemble of ten runs for June-November 1994 and 1998 was studied. The representation of the TCs is much improved compared to the low-resolution forcing AGCM, but the TCs are not as intense as observed ones, as the RSM horizontal resolution is not sufficiently high. The large-scale fields of the RSM are examined and compared to both the AGCM and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis. The large-scale fields of RSM characteristics are in general similar to those of the reanalysis. Various properties of the TCs in the RSM are also examined such as first positions, tracks, accumulated cyclone energy (ACE) and duration. While the RSM does not reproduce the higher number of TCs in 1994 than in 1998, other measures of TC activity (ACE, number of cyclone days) in the RSM are higher in 1994 than in 1998. Copyright (C) 2006 Royal Meteorological Society.
引用
收藏
页码:311 / 325
页数:15
相关论文
共 106 条
[1]  
[Anonymous], 2004, Proceedings of the 26th conference on hurricanes and tropical meteorology
[2]  
Bell GD, 2000, B AM METEOROL SOC, V81, pS1, DOI 10.1175/1520-0477(2000)81[s1:CAF]2.0.CO
[3]  
2
[4]   Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? [J].
Bengtsson, L ;
Botzet, M ;
Esch, M .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1996, 48 (01) :57-73
[5]   HURRICANE-TYPE VORTICES IN A GENERAL-CIRCULATION MODEL [J].
BENGTSSON, L ;
BOTZET, M ;
ESCH, M .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1995, 47 (02) :175-196
[6]   SIMULATION OF HURRICANE-TYPE VORTICES IN A GENERAL-CIRCULATION MODEL [J].
BENGTSSON, L ;
BOTTGER, H ;
KANAMITSU, M .
TELLUS, 1982, 34 (05) :440-457
[7]  
Briegel LM, 1997, MON WEATHER REV, V125, P1397, DOI 10.1175/1520-0493(1997)125<1397:LSIOTC>2.0.CO
[8]  
2
[9]   CAN EXISTING CLIMATE MODELS BE USED TO STUDY ANTHROPOGENIC CHANGES IN TROPICAL CYCLONE CLIMATE [J].
BROCCOLI, AJ ;
MANABE, S .
GEOPHYSICAL RESEARCH LETTERS, 1990, 17 (11) :1917-1920
[10]   Western North Pacific tropical cyclone intensity and ENSO [J].
Camargo, SJ ;
Sobel, AH .
JOURNAL OF CLIMATE, 2005, 18 (15) :2996-3006