Maximum likelihood algorithms for generalized linear mixed models

被引:507
作者
McCulloch, CE [1 ]
机构
[1] CORNELL UNIV,CTR STAT,ITHACA,NY 14850
关键词
importance sampling; Metropolis-hastings algorithm; Monte Carlo EM; Newton-Raphson algorithm; penalized quasi-likelihood; simulated maximum likelihood;
D O I
10.2307/2291460
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Maximum likelihood algorithms are described for generalized linear mixed models. I show how to construct a Monte Carlo version of the EM algorithm, propose a Monte Carlo Newton-Raphson algorithm, and evaluate and improve the use of importance sampling ideas. Calculation of the maximum likelihood estimates is feasible for a wide variety of problems where they were not previously. I also use the Newton-Raphson algorithm as a framework to compare maximum likelihood to the ''joint-maximization'' or penalized quasi-likelihood methods and explain why the latter can perform poorly.
引用
收藏
页码:162 / 170
页数:9
相关论文
共 22 条
[1]  
ABRAMOWITZ M, 1959, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1994, 568 U MINN SCH STAT
[3]  
*APT SYST, 1992, GAUSS MAN VERS 3 0
[4]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[5]   MONTE-CARLO EM ESTIMATION FOR TIME-SERIES MODELS INVOLVING COUNTS [J].
CHAN, KS ;
LEDOLTER, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (429) :242-252
[6]  
Diggle P., 2002, Analysis of longitudinal data
[7]   A CAVEAT CONCERNING INDEPENDENCE ESTIMATING EQUATIONS WITH MULTIVARIATE BINARY DATA [J].
FITZMAURICE, GM .
BIOMETRICS, 1995, 51 (01) :309-317
[8]   MAXIMUM-LIKELIHOOD-ESTIMATION FOR CONSTRAINED-DATA OR MISSING-DATA MODELS [J].
GELFAND, AE ;
CARLIN, BP .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1993, 21 (03) :303-311
[9]  
GEYER CJ, 1992, J R STAT SOC B, V54, P657
[10]  
GILMOUR AR, 1985, BIOMETRIKA, V72, P593, DOI 10.1093/biomet/72.3.593