Altered Intracellular Ca2+ Homeostasis in Nerve Terminals of Severe Spinal Muscular Atrophy Mice

被引:132
作者
Ruiz, Rocio [1 ]
Jose Casanas, Juan [1 ]
Torres-Benito, Laura [1 ]
Cano, Raquel [1 ]
Tabares, Lucia [1 ]
机构
[1] Univ Seville, Sch Med, Dept Physiol & Med Biophys, E-41009 Seville, Spain
关键词
NEUROMUSCULAR-JUNCTION; MOUSE MODELS; MITOCHONDRIAL DYSFUNCTION; SYNAPTIC STRENGTH; SINGLE NUCLEOTIDE; DETERMINING GENE; SMN PROTEIN; END-PLATE; RELEASE; SURVIVAL;
D O I
10.1523/JNEUROSCI.4496-09.2010
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Low levels of survival motor neuron (SMN) protein result in spinal muscular atrophy (SMA), a severe genetic disease characterized by motor impairment and premature lethality. Although SMN is a ubiquitous protein, motor neurons are much more vulnerable to low levels of SMN than other cells. To gain insight into the pathogenesis of SMA, we have compared synaptic function of motor terminals in wild-type and severe SMA mice at different ages and in two proximal muscles. Our results show that mutant muscle fibers fire normal action potentials and that multi-innervated terminals are functional. By studying the characteristics of the three main components of synaptic transmission in nerve terminals (spontaneous, evoked, and asynchronous release), we found that the kinetics of the postsynaptic potentials are slowed and evoked neurotransmitter release is decreased by similar to 55%. In addition, asynchronous release is increased similar to 300%, indicating an anomalous augmentation of intraterminal bulk Ca2+ during repetitive stimulation. Together, these results show that the reduction of SMN affects synaptic maturation, evoked release, and regulation of intraterminal Ca2+ levels.
引用
收藏
页码:849 / 857
页数:9
相关论文
共 43 条
[1]   Mitochondrial Dysfunction in a Neural Cell Model of Spinal Muscular Atrophy [J].
Acsadi, Gyula ;
Lee, Icksoo ;
Li, Xingli ;
Khaidakov, Magomed ;
Pecinova, Alena ;
Parker, Graham C. ;
Huettemann, Maik .
JOURNAL OF NEUROSCIENCE RESEARCH, 2009, 87 (12) :2748-2756
[2]   Diversification of synaptic strength: Presynaptic elements [J].
Atwood, HL ;
Karunanithi, S .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (07) :497-516
[3]   KINETICS OF TRANSMITTER RELEASE AT FROG NEUROMUSCULAR JUNCTION [J].
BARRETT, EF ;
STEVENS, CF .
JOURNAL OF PHYSIOLOGY-LONDON, 1972, 227 (03) :691-708
[4]   Severe depletion of mitochondrial DNA in spinal muscular atrophy [J].
Berger, A ;
Mayr, JA ;
Meierhofer, D ;
Fötschl, U ;
Bittner, R ;
Budka, H ;
Grethen, C ;
Huemer, M ;
Kofler, B ;
Sperl, W .
ACTA NEUROPATHOLOGICA, 2003, 105 (03) :245-251
[5]   A novel method for oral delivery of drug compounds to the neonatal SMNΔ7 mouse model of spinal muscular atrophy [J].
Butchbach, Matthew E. R. ;
Edwards, Jonathan D. ;
Schussler, Kristie R. ;
Burghes, Arthur H. M. .
JOURNAL OF NEUROSCIENCE METHODS, 2007, 161 (02) :285-290
[6]   Survival motor neuron function in motor axons is independent of functions required for small nuclear ribonucleoprotein biogenesis [J].
Carrel, Tessa L. ;
McWhorter, Michelle L. ;
Workman, Eileen ;
Zhang, Honglai ;
Wolstencroft, Elizabeth C. ;
Lorson, Christian ;
Bassell, Gary J. ;
Burghes, Arthur H. M. ;
Beattie, Christine E. .
JOURNAL OF NEUROSCIENCE, 2006, 26 (43) :11014-11022
[7]  
CHOW I, 1985, J NEUROSCI, V5, P1076
[8]   Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model [J].
Cifuentes-Diaz, C ;
Nicole, S ;
Velasco, ME ;
Borra-Cebrian, C ;
Panozzo, C ;
Frugier, T ;
Millet, G ;
Roblot, N ;
Joshi, V ;
Melki, J .
HUMAN MOLECULAR GENETICS, 2002, 11 (12) :1439-1447
[9]   Alterations in synaptic strength preceding axon withdrawal [J].
Colman, H ;
Nabekura, J ;
Lichtman, JW .
SCIENCE, 1997, 275 (5298) :356-361
[10]   The neurobiology of childhood spinal muscular atrophy [J].
Crawford, TO ;
Pardo, CA .
NEUROBIOLOGY OF DISEASE, 1996, 3 (02) :97-110