Expression profiling identifies microRNA signature in pancreatic cancer

被引:838
作者
Lee, Eun Jon
Gusev, Yuriy
Jiang, Jinmai
Nuovo, Gerard J.
Lerner, Megan R.
Frankel, Wendy L.
Morgan, Daniel L.
Postier, Russell G.
Brackett, Daniel J.
Schmittgen, Thomas D. [1 ]
机构
[1] Ohio State Univ, Coll Pharm, Columbus, OH 43210 USA
[2] Univ Oklahoma, Hlth Sci Ctr, Dept Surg, Oklahoma City, OK USA
[3] Ohio State Univ, Med Ctr, Dept Pathol, Columbus, OH 43210 USA
[4] Vet Affairs Med Ctr, Oklahoma City, OK 73104 USA
关键词
cancer; noncoding RNA; gene expression; real-time PCR;
D O I
10.1002/ijc.22394
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
microRNAs are functional, 22 nt, noncoding RNAs that negatively regulate gene expression. Disturbance of microRNA expression may play a role in the initiation and progression of certain diseases. A microRNA expression signature has been identified that is associated with pancreatic cancer. This has been accomplished with the application of real-time PCR profiling of over 200 microRNA precursors on specimens of human pancreatic adenocarcinoma, paired benign tissue, normal pancreas, chronic pancreatitis and nine pancreatic cancer cell lines. Hierarchical clustering was able to distinguish tumor from normal pancreas, pancreatitis and cell lines. The PAM algorithm correctly classified 28 of 28 tumors, 6 of 6 normal pancreas and 11 of 15 adjacent benign tissues. One hundred microRNA precursors were aberrantly expressed in pancreatic cancer or desmoplasia (p < 0.01), including microRNAs previously reported as differentially expressed in other human cancers (miR-155, miR21, miR-221 and miR-222) as well as those not previously reported in cancer (miR-376a and miR-301). Most of the top aberrantly expressed miRNAs displayed increased expression in the tumor. Expression of the active, mature microRNA was validated using a real-time PCR assay to quantify the mature microRNA and Northern blotting. Reverse transcription in situ PCR showed that three of the top differentially expressed miRNAs (miR-221, -376a and -301) were localized to tumor cells and not to stroma or normal acini or ducts. Aberrant microRNA expression may offer new clues to pancreatic tumorigenesis and may provide diagnostic biomarkers for pancreatic adenocarcinoma. (c) 2006 Wiley-Liss, Inc.
引用
收藏
页码:1046 / 1054
页数:9
相关论文
共 47 条
  • [1] MicroRNA functions in animal development and human disease
    Alvarez-Garcia, I
    Miska, EA
    [J]. DEVELOPMENT, 2005, 132 (21): : 4653 - 4662
  • [2] The molecular basis of pancreatic fibrosis - Common stromal gene expression in chronic pancreatitis and pancreatic adenocarcinoma
    Binkley, CE
    Zhang, LZ
    Greenson, JK
    Giordano, TJ
    Kuick, R
    Misek, D
    Hanash, S
    Logsdon, CD
    Simeone, DM
    [J]. PANCREAS, 2004, 29 (04) : 254 - 263
  • [3] Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers
    Calin, GA
    Sevignani, C
    Dan Dumitru, C
    Hyslop, T
    Noch, E
    Yendamuri, S
    Shimizu, M
    Rattan, S
    Bullrich, F
    Negrini, M
    Croce, CM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) : 2999 - 3004
  • [4] A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia
    Calin, GA
    Ferracin, M
    Cimmino, A
    Di Leva, G
    Shimizu, M
    Wojcik, SE
    Iorio, MV
    Visone, R
    Sever, NI
    Fabbri, M
    Iuliano, R
    Palumbo, T
    Pichiorri, F
    Roldo, C
    Garzon, R
    Sevignani, C
    Rassenti, L
    Alder, H
    Volinia, S
    Liu, CG
    Kipps, TJ
    Negrini, M
    Croce, CM
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2005, 353 (17) : 1793 - 1801
  • [5] MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias
    Calin, GA
    Liu, CG
    Sevignani, C
    Ferracin, M
    Felli, N
    Dumitru, CD
    Shimizu, M
    Cimmino, A
    Zupo, S
    Dono, M
    Dell'Aquila, ML
    Alder, H
    Rassenti, L
    Kipps, TJ
    Bullrich, F
    Negrini, M
    Croce, CM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (32) : 11755 - 11760
  • [6] MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells
    Chan, JA
    Krichevsky, AM
    Kosik, KS
    [J]. CANCER RESEARCH, 2005, 65 (14) : 6029 - 6033
  • [7] Real-time quantification of microRNAs by stem-loop RT-PCR
    Chen, CF
    Ridzon, DA
    Broomer, AJ
    Zhou, ZH
    Lee, DH
    Nguyen, JT
    Barbisin, M
    Xu, NL
    Mahuvakar, VR
    Andersen, MR
    Lao, KQ
    Livak, KJ
    Guegler, KJ
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 (20) : e179.1 - e179.9
  • [8] Extensive modulation of a set of microRNAs in primary glioblastoma
    Ciafrè, SA
    Galardi, S
    Mangiola, A
    Ferracin, M
    Liu, CG
    Sabatino, G
    Negrini, M
    Maira, G
    Croce, CM
    Farace, MG
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 334 (04) : 1351 - 1358
  • [9] Accumulation of miR-155 and BIC RNA in human B cell lymphomas
    Eis, PS
    Tam, W
    Sun, LP
    Chadburn, A
    Li, ZD
    Gomez, MF
    Lund, E
    Dahlberg, JE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (10) : 3627 - 3632
  • [10] Cluster analysis and display of genome-wide expression patterns
    Eisen, MB
    Spellman, PT
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) : 14863 - 14868