Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes

被引:89
作者
Wang, Joseph [1 ]
Tangkuaram, Tanin
Loyprasert, Suchera
Vazquez-Alvarez, Terannie
Veerasai, Waret
Kanatharana, Proespichaya
Thavarungkul, Panote
机构
[1] Arizona State Univ, Dept Chem & Mat Engn, Biodesign Inst, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Chem & Biochem, Biodesign Inst, Tempe, AZ 85287 USA
[3] Mahidol Univ, Dept Chem, Bangkok 10400, Thailand
[4] Prince Songkla Univ, Dept Chem, Hat Yai 90000, Thailand
关键词
insulin; electrocatalysis; carbon nanotubes; ruthenium;
D O I
10.1016/j.aca.2006.07.084
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A bilayer surface coating, prepared by electrodepositing ruthenium oxide (RuOx) onto a carbon nanotube (CNT) layer, offers dramatic improvements in the stability and sensitivity of voltammetric and amperometric measurements of insulin compared to the individual (CNT or RuOx) coated electrodes. The enhanced electrocatalytic activity towards insulin is indicated from lowering the potential of the oxidation process (starting around 0.35 versus Ag/AgCl) and the substantially higher sensitivity over the entire potential range. A wide linear dynamic range (10-800 nM) was achieved with a detection limit of I nM. The marked electrocatalytic activity of the RuOx/CNT coating towards insulin is coupled with a greatly enhanced stability. For example, the insulin amperometric response of the RuOx/CNT-coated electrodes is highly stable, with 97% of the initial activity remaining after 60 min stirring of 2 x 10(-6) M solution (compared to significantly faster current diminutions at the RuOx- or CNT-coated surfaces). The results suggest great promise for miniaturized sensors and detectors for monitoring insulin. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 15 条
[1]   Carbon electrodes modified with ruthenium metallodendrimer multilayers for the mediated oxidation of methionine and insulin at physiological pH [J].
Cheng, L ;
Pacey, GE ;
Cox, JA .
ANALYTICAL CHEMISTRY, 2001, 73 (22) :5607-5610
[2]   FLOW-INJECTION AMPEROMETRIC DETERMINATION OF INSULIN BASED UPON ITS OXIDATION AT A MODIFIED ELECTRODE [J].
COX, JA ;
GRAY, TJ .
ANALYTICAL CHEMISTRY, 1989, 61 (21) :2462-2464
[3]   Ruthenium catalyst for amperometric determination of insulin at physiological pH [J].
Gorski, W ;
Aspinwall, CA ;
Lakey, JRT ;
Kennedy, RT .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1997, 425 (1-2) :191-199
[4]   Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation [J].
He, ZB ;
Chen, JH ;
Liu, DY ;
Tang, H ;
Deng, W ;
Kuang, WF .
MATERIALS CHEMISTRY AND PHYSICS, 2004, 85 (2-3) :396-401
[5]   Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes [J].
Hrapovic, S ;
Liu, YL ;
Male, KB ;
Luong, JHT .
ANALYTICAL CHEMISTRY, 2004, 76 (04) :1083-1088
[6]   AMPEROMETRIC MONITORING OF CHEMICAL SECRETIONS FROM INDIVIDUAL PANCREATIC BETA-CELLS [J].
KENNEDY, RT ;
HUANG, L ;
ATKINSON, MA ;
DUSH, P .
ANALYTICAL CHEMISTRY, 1993, 65 (14) :1882-1887
[7]   Extracellular pH is required for rapid release of insulin from Zn-insulin precipitates in beta-cell secretory vesicles during exocytosis [J].
Kennedy, RT ;
Lan, HA ;
Aspinwall, CA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (07) :1795-1796
[8]   Comparison of the electrochemical reactivity of electrodes modified with carbon nanotubes from different sources [J].
Lawrence, NS ;
Deo, RP ;
Wang, J .
ELECTROANALYSIS, 2005, 17 (01) :65-72
[9]   Iridium-based electrocatalytic systems for the determination of insulin [J].
Pikulski, M ;
Gorski, W .
ANALYTICAL CHEMISTRY, 2000, 72 (13) :2696-2702
[10]  
PRADAC J, 1968, J ELECTROANAL CHEM, V17, P167, DOI 10.1016/S0022-0728(68)80042-7