Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants

被引:211
作者
Kleineidam, S [1 ]
Schüth, C [1 ]
Grathwohl, P [1 ]
机构
[1] Univ Tubingen, Ctr Appl Geosci, Appl Geol Grp, D-72076 Tubingen, Germany
关键词
D O I
10.1021/es010293b
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Equilibrium sorption isotherms were measured for five different low-polarity organic compounds (benzene, trichloroethene, 1,2- and 1,4-dichlorobenzene, and phenanthrene) over a wide concentration range. The investigated sorbents can be grouped into the following three classes: (1) humic soil organic matter, which shows linear sorption isotherms (solely partitioning, as observed in the peat sample); (2) carbon materials, which were thermally altered (due to their natural history or industrial production) and thus contain a high specific surface area and exhibit nonlinear isotherms, and (3) pure engineered microporous materials (e.g., zeolites and activated carbon), where adsorption is solely due to a pore-filling process. Sorption of all compounds was fitted very well by the Polanyi-Dubinin-Manes (PDM) model, which for sorbents containing humic organic matter (e.g., peat) was combined with linear partitioning. Both the partitioning and the Polanyi-Dubinin-Manes model predict unique sorption isotherms of similar compounds if the solubility-normalized aqueous concentration is used. In addition, an inverse linear relationship between the distribution coefficient (K-d) and water solubility, which was very well confirmed by the data, is obtained. This also leads to unit-equivalent Freundlich sorption isotherms and explains the often observed apparent correlation between sorption capacity at a given concentration (e.g., Freundlich coefficient) and sorption nonlinearity (Freundlich exponent).
引用
收藏
页码:4689 / 4697
页数:9
相关论文
共 65 条
[1]  
ALLENKING RM, IN PRESS ADV WATER R
[2]   Role of microstructural properties in the time dependent sorption/desorption behavior of 1,2-dichloroethane on humic substances [J].
Aochi, YO ;
Farmer, WJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (09) :2520-2526
[3]   SORPTION AND DIFFUSION IN ETHYL CELLULOSE .3. COMPARISON BETWEEN ETHYL CELLULOSE AND RUBBER [J].
BARRER, RM ;
BARRIE, JA ;
SLATER, J .
JOURNAL OF POLYMER SCIENCE, 1958, 27 (115) :177-197
[4]   A million-year record of fire in sub-Saharan Africa [J].
Bird, MI ;
Cali, JA .
NATURE, 1998, 394 (6695) :767-769
[5]   Sorption of hydrophobic organic compounds by soil materials: Application of unit equivalent Freundlich coefficients [J].
Carmo, AM ;
Hundal, LS ;
Thompson, ML .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (20) :4363-4369
[6]   PHYSICAL CONCEPT OF SOIL-WATER EQUILIBRIA FOR NON-IONIC ORGANIC-COMPOUNDS [J].
CHIOU, CT ;
PETERS, LJ ;
FREED, VH .
SCIENCE, 1979, 206 (4420) :831-832
[7]   PARTITION EQUILIBRIA OF NON-IONIC ORGANIC-COMPOUNDS BETWEEN SOIL ORGANIC-MATTER AND WATER [J].
CHIOU, CT ;
PORTER, PE ;
SCHMEDDING, DW .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1983, 17 (04) :227-231
[8]   Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: Potential sources of the sorption nonlinearity [J].
Chiou, CT ;
Kile, DE ;
Rutherford, DW ;
Sheng, GY ;
Boyd, SA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (07) :1254-1258
[9]   STUDIES OF THE STRUCTURAL HETEROGENEITY OF MICROPOROUS CARBONS USING LIQUID-SOLID ADSORPTION-ISOTHERMS [J].
CHOMA, J ;
BURAKIEWICZMORTKA, W ;
JARONIEC, M ;
GILPIN, RK .
LANGMUIR, 1993, 9 (10) :2555-2561
[10]   The prediction of partitioning coefficients for chemicals causing environmental concern [J].
Chu, W ;
Chan, KH .
SCIENCE OF THE TOTAL ENVIRONMENT, 2000, 248 (01) :1-10