Numerical study of scars in a chaotic billiard

被引:16
作者
Li, BW
机构
[1] HONG KONG BAPTIST UNIV,CTR NONLINEAR STUDIES,HONG KONG,HONG KONG
[2] UNIV MARIBOR,CTR APPL MATH & THEORET PHYS,MARIBOR 2000,SLOVENIA
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 05期
关键词
D O I
10.1103/PhysRevE.55.5376
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study numerically the scaling properties of scars in stadium billiard. Using the semiclassical criterion, we have searched systematically the scars of the same type through a very wide range, from ground state to as high as the 1 millionth state. We have analyzed the integrated probability density along the periodic orbit. The numerical results confirm that the average intensity of certain types of scars is independent of (h) over bar rather than scales with root (h) over bar. Our findings confirm the theoretical predictions of Robnik (1989).
引用
收藏
页码:5376 / 5379
页数:4
相关论文
共 19 条
[1]   SEMICLASSICAL CRITERION FOR SCARS IN WAVE-FUNCTIONS OF CHAOTIC SYSTEMS [J].
AGAM, O ;
FISHMAN, S .
PHYSICAL REVIEW LETTERS, 1994, 73 (06) :806-809
[2]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[3]   QUANTUM SCARS OF CLASSICAL CLOSED ORBITS IN PHASE-SPACE [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 423 (1864) :219-231
[4]   SMOOTHED WAVE-FUNCTIONS OF CHAOTIC QUANTUM-SYSTEMS [J].
BOGOMOLNY, EB .
PHYSICA D, 1988, 31 (02) :169-189
[5]   QUANTUM-MECHANICS OF A CLASSICALLY CHAOTIC SYSTEM - OBSERVATIONS ON SCARS, PERIODIC-ORBITS, AND VIBRATIONAL ADIABATICITY [J].
ECKHARDT, B ;
HOSE, G ;
POLLAK, E .
PHYSICAL REVIEW A, 1989, 39 (08) :3776-3793
[6]   BOUND-STATE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC HAMILTONIAN-SYSTEMS - SCARS OF PERIODIC-ORBITS [J].
HELLER, EJ .
PHYSICAL REVIEW LETTERS, 1984, 53 (16) :1515-1518
[7]  
HELLER EJ, 1991, P 1989 HOUCH SUMM SC, P602
[8]   Wavefunctions, expectation values and scars on Poincare sections - A scattering approach [J].
Klakow, D ;
Smilansky, U .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (12) :3213-3231
[9]  
Li B., UNPUB
[10]   STATISTICAL PROPERTIES OF HIGH-LYING CHAOTIC EIGENSTATES [J].
LI, BW ;
ROBNIK, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (16) :5509-5523