Semidefinite programming relaxations for graph coloring and maximal clique problems

被引:39
作者
Dukanovic, Igor
Rendl, Franz
机构
[1] Univ Klagenfurt, Inst Math, A-9020 Klagenfurt, Austria
[2] Univ Maribor, Ekon Poslovna Fak, SLO-2000 Maribor, Slovenia
关键词
Lovasz theta number; chromatic number; clique number; cutting planes;
D O I
10.1007/s10107-006-0026-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The semidefinite programming formulation of the Lovasz theta number does not only give one of the best polynomial simultaneous bounds on the chromatic number chi(G) or the clique number omega(G) of a graph, but also leads to heuristics for graph coloring and extracting large cliques. This semidefinite programming formulation can be tightened toward either chi(G) or omega(G) by adding several types of cutting planes. We explore several such strengthenings, and show that some of them can be computed with the same effort as the theta number. We also investigate computational simplifications for graphs with rich automorphism groups.
引用
收藏
页码:345 / 365
页数:21
相关论文
共 36 条
[1]  
BENSON S, 2000, APPL ALGORITHMS COMP, P1
[2]   Solving large-scale sparse semidefinite programs for combinatorial optimization [J].
Benson, SJ ;
Ye, YY ;
Zhang, X .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (02) :443-461
[3]   Solving standard quadratic optimization problems via linear, semidefinite and copositive programming [J].
Bomze, IM ;
De Klerk, E .
JOURNAL OF GLOBAL OPTIMIZATION, 2002, 24 (02) :163-185
[4]   Solving lift-and-project relaxations of binary integer programs [J].
Burer, S ;
Vandenbussche, D .
SIAM JOURNAL ON OPTIMIZATION, 2006, 16 (03) :726-750
[5]   A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization [J].
Burer, S ;
Monteiro, RDC .
MATHEMATICAL PROGRAMMING, 2003, 95 (02) :329-357
[6]  
BUSYGIN S, 2003, EL C COMP COMPL, P1
[7]  
Charikar M, 2002, SIAM PROC S, P616
[8]   On approximate graph colouring and MAX-k-CUT algorithms based on the υ-function [J].
De Klerk, E ;
Pasechnik, DV ;
Warners, JP .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2004, 8 (03) :267-294
[9]  
DEKLERK E, 2005, IN PRESS MATH PROGRA
[10]  
DUKANOVIC I, 2006, THESIS U KLAGENFURT