Drug binding in human P-glycoprotein causes conformational changes in both nucleotide-binding domains

被引:111
作者
Loo, TW
Bartlett, MC
Clarke, DM
机构
[1] Univ Toronto, Dept Med, Canadian Inst Hlth Res Grp Membrane Biol, Toronto, ON M5S 1A8, Canada
[2] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada
关键词
D O I
10.1074/jbc.M211307200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human multidrug resistance P-glycoprotein (P-gp, ABCB1) uses ATP to transport many structurally diverse compounds out of the cell. It is an ABC transporter with two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Recently, we showed that the "LSGGQ" motif in one NBD ((LS)-L-531-GGQ(535) in NBD1; (1176)SGGQ(1180) in NBD2) is adjacent to the "Walker A" sequence ((1070)GSSGCGKS(1077) in NBD2; (427)GNSGCGKS(434) in NBD1) in the other NBD (Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2002) J. Biol. Chem. 277, 41303-41306). Drug substrates can stimulate or inhibit the ATPase activity of P-gp. Here, we report the effect of drug binding on cross-linking between the LSGGQ signature and Walker A sites (Cys(431) (NBD1)/C1176C(NBD2) and Cys(1074) (NBD2)/L531C(NBD1), respectively). Seven drug substrates (calcein-AM, demecolcine, cis(Z)-flupentixol, verapamil, cyclosporin A, Hoechst 33342, and trans(E)-flupentixol) were tested for their effect on oxidative cross-linking. Substrates that stimulated the ATPase activity of P-gp (calcein-AM, demecolcine, cis(Z)-flupentixol, and verapamil) increased the rate of cross-linking between Cys(431) (NBD1-Walker A)/C1176C(NBD2-LSGGQ) and between CyS1074(NBD2-Walker A)/L531C(NBD1-LSGGQ) when compared with cross-linking in the absence of drug substrate. By contrast, substrates that inhibited ATPase activity (cyclosporin A, Hoechst 33342, and trans(E)-flupentixol) decreased the rate of cross-linking. These results indicate that interaction between the LSGGQ motifs and Walker A sites must be essential for coupling drug binding to ATP hydrolysis. Drug binding in the transmembrane domains can induce long range conformational changes in the NBDs, such that compounds that stimulate or inhibit ATPase activity must decrease and increase, respectively, the distance between the Walker A and LSGGQ sequences.
引用
收藏
页码:1575 / 1578
页数:4
相关论文
共 38 条
[1]  
ALSHAWI MK, 1994, J BIOL CHEM, V269, P8986
[2]   Biochemical, cellular, and pharmacological aspects of the multidrug transporter [J].
Ambudkar, SV ;
Dey, S ;
Hrycyna, CA ;
Ramachandra, M ;
Pastan, I ;
Gottesman, MM .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1999, 39 :361-398
[3]   PARTIAL-PURIFICATION AND RECONSTITUTION OF THE HUMAN MULTIDRUG-RESISTANCE PUMP - CHARACTERIZATION OF THE DRUG-STIMULATABLE ATP HYDROLYSIS [J].
AMBUDKAR, SV ;
LELONG, IH ;
ZHANG, JP ;
CARDARELLI, CO ;
GOTTESMAN, MM ;
PASTAN, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (18) :8472-8476
[4]   DISCRETE MUTATIONS INTRODUCED IN THE PREDICTED NUCLEOTIDE-BINDING SITES OF THE MDR1 GENE ABOLISH ITS ABILITY TO CONFER MULTIDRUG RESISTANCE [J].
AZZARIA, M ;
SCHURR, E ;
GROS, P .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (12) :5289-5297
[5]   Characterization of the human multidrug resistance protein containing mutations in the ATP-binding cassette signature region [J].
Bakos, E ;
Klein, I ;
Welker, E ;
Szabo, K ;
Muller, M ;
Sarkadi, B ;
Varadi, A .
BIOCHEMICAL JOURNAL, 1997, 323 :777-783
[6]   Mammalian ABC transporters in health and disease [J].
Borst, P ;
Elferink, RO .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :537-592
[7]   INTERNAL DUPLICATION AND HOMOLOGY WITH BACTERIAL TRANSPORT PROTEINS IN THE MDR1 (P-GLYCOPROTEIN) GENE FROM MULTIDRUG-RESISTANT HUMAN-CELLS [J].
CHEN, CJ ;
CHIN, JE ;
UEDA, K ;
CLARK, DP ;
PASTAN, I ;
GOTTESMAN, MM ;
RONINSON, IB .
CELL, 1986, 47 (03) :381-389
[8]   Evidence for two nonidentical drug-interaction sites in the human P-glycoprotein [J].
Dey, S ;
Ramachandra, M ;
Pastan, I ;
Gottesman, MM ;
Ambudkar, SV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (20) :10594-10599
[9]  
DOIGE CA, 1992, BIOCHIM BIOPHYS ACTA, V1109, P149, DOI 10.1016/0005-2736(92)90078-Z
[10]  
GOODNO CC, 1982, METHOD ENZYMOL, V85, P116