Postsynaptic regulation of synaptic plasticity by synaptotagmin 4 requires both C2 domains

被引:40
作者
Barber, Cynthia F. [1 ,2 ]
Jorquera, Ramon A. [1 ,2 ]
Melom, Jan E. [1 ,2 ]
Littleton, J. Troy [1 ,2 ]
机构
[1] MIT, Dept Biol, Picower Inst Learning & Memory, Cambridge, MA 02139 USA
[2] MIT, Dept Brain & Cognit Sci, Picower Inst Learning & Memory, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
CA2+ BINDING; NEUROMUSCULAR SYNAPSES; PRESYNAPTIC RELEASE; EXOCYTOSIS; GENOME; IV; PROTEINS; TRANSMISSION; EXPRESSION; ORGANELLES;
D O I
10.1083/jcb.200903098
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Ca2+ influx into synaptic compartments during activity is a key mediator of neuronal plasticity. Although the role of presynaptic Ca2+ in triggering vesicle fusion though the Ca2+ sensor synaptotagmin 1 (Syt 1) is established, molecular mechanisms that underlie responses to postsynaptic Ca2+ influx remain unclear. In this study, we demonstrate that fusion-competent Syt 4 vesicles localize postsynaptically at both neuromuscular junctions (NMJs) and central nervous system synapses in Drosophila melanogaster. Syt 4 messenger RNA and protein expression are strongly regulated by neuronal activity, whereas altered levels of postsynaptic Syt 4 modify synaptic growth and presynaptic release properties. Syt 4 is required for known forms of activity-dependent structural plasticity at NMJs. Synaptic proliferation and retrograde signaling mediated by Syt 4 requires functional C2A and C2B Ca2+-binding sites, as well as serine 284, an evolutionarily conserved substitution for a key Ca2+-binding aspartic acid found in other synaptotagmins. These data suggest that Syt 4 regulates activity-dependent release of postsynaptic retrograde signals that promote synaptic plasticity, similar to the role of Syt 1 as a Ca2+ sensor for presynaptic vesicle fusion.
引用
收藏
页码:295 / 310
页数:16
相关论文
共 56 条
[1]   Drosophila melanogaster Scramblases modulate synaptic transmission [J].
Acharya, U ;
Edwards, MB ;
Jorquera, RA ;
Silva, H ;
Nagashima, K ;
Labarca, P ;
Acharya, JK .
JOURNAL OF CELL BIOLOGY, 2006, 173 (01) :69-82
[2]   Genetic and molecular analysis of the synaptotagmin family [J].
Adolfsen, B ;
Littleton, JT .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2001, 58 (03) :393-402
[3]   Synaptotagmins are trafficked to distinct subcellular domains including the postsynaptic compartment [J].
Adolfsen, B ;
Saraswati, S ;
Yoshihara, M ;
Littleton, JT .
JOURNAL OF CELL BIOLOGY, 2004, 166 (02) :249-260
[4]   Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling [J].
Ataman, Bulent ;
Ashley, James ;
Gorczyca, Michael ;
Ramachandran, Preethi ;
Fouquet, Wernher ;
Sigrist, Stephan J. ;
Budnik, Vivian .
NEURON, 2008, 57 (05) :705-718
[5]   Synaptic growth and transcriptional regulation in Drosophila [J].
Barber, Cynthia ;
Littleton, J. T. Roy .
TRANSCRIPTIONAL REGULATION BY NEURONAL ACTIVITY: TO THE NUCLEUS AND BACK, 2008, :253-275
[6]  
BUDNIK V, 1990, J NEUROSCI, V10, P3754
[7]   How does synaptotagmin trigger neurotransmitter release? [J].
Chapman, Edwin R. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2008, 77 :615-641
[8]   Characterization of the yeast tricalbins: membrane-bound multi-C2-domain proteins that form complexes involved in membrane trafficking [J].
Creutz, CE ;
Snyder, SL ;
Schulz, TA .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2004, 61 (10) :1208-1220
[9]   Structural basis for the evolutionary inactivation of Ca2+ binding to synaptotagmin 4 [J].
Dai, H ;
Shin, OH ;
Machius, M ;
Tomchick, DR ;
Südhof, TC ;
Rizo, J .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (09) :844-849
[10]   Genetic dissection of structural and functional components of synaptic plasticity .3. CREB is necessary for presynaptic functional plasticity [J].
Davis, GW ;
Schuster, CM ;
Goodman, CS .
NEURON, 1996, 17 (04) :669-679