The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA

被引:348
作者
Ye, Qiaozhen
Krug, Robert M.
Tao, Yizhi Jane
机构
[1] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77005 USA
[2] Univ Texas, Inst Mol & Cellular Biol, Austin, TX 78712 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1038/nature05379
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Influenza A viruses pose a serious threat to world public health, particularly the currently circulating avian H5N1 viruses. The influenza viral nucleoprotein forms the protein scaffold of the helical genomic ribonucleoprotein complexes, and has a critical role in viral RNA replication(1). Here we report a 3.2 angstrom crystal structure of this nucleoprotein, the overall shape of which resembles a crescent with a head and a body domain, with a protein fold different compared with that of the rhabdovirus nucleoprotein(2,3). Oligomerization of the influenza virus nucleoprotein is mediated by a flexible tail loop that is inserted inside a neighbouring molecule. This flexibility in the tail loop enables the nucleoprotein to form loose polymers as well as rigid helices, both of which are important for nucleoprotein functions. Single residue mutations in the tail loop result in the complete loss of nucleoprotein oligomerization. An RNA-binding groove, which is found between the head and body domains at the exterior of the nucleoprotein oligomer, is lined with highly conserved basic residues widely distributed in the primary sequence. The nucleoprotein structure shows that only one of two proposed nuclear localization signals are accessible, and suggests that the body domain of nucleoprotein contains the binding site for the viral polymerase. Our results identify the tail loop binding pocket as a potential target for antiviral development.
引用
收藏
页码:1078 / 1082
页数:5
相关论文
共 30 条
[1]   Crystal structure of the rabies virus nucleoprotein-RNA complex [J].
Albertini, Aurelie A. V. ;
Wernimont, Amy K. ;
Muziol, Tadeusz ;
Ravelli, Raimond B. G. ;
Clapier, Cedric R. ;
Schoehn, Guy ;
Weissenhorn, Winfried ;
Ruigrok, Rob W. H. .
SCIENCE, 2006, 313 (5785) :360-363
[2]   IDENTIFICATION OF AN RNA-BINDING REGION WITHIN THE N-TERMINAL 1/3 OF THE INFLUENZA-A VIRUS NUCLEOPROTEIN [J].
ALBO, C ;
VALENCIA, A ;
PORTELA, A .
JOURNAL OF VIROLOGY, 1995, 69 (06) :3799-3806
[3]   3D structure of the influenza virus polymerase complex:: Localization of subunit domains [J].
Area, E ;
Martín-Benito, J ;
Gastaminza, P ;
Torreira, E ;
Valpuesta, JM ;
Carrascosa, JL ;
Ortín, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (01) :308-313
[4]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[5]   STRUCTURE OF INFLUENZA-VIRUS RNP .1. INFLUENZA-VIRUS NUCLEOPROTEIN MELTS SECONDARY STRUCTURE IN PANHANDLE RNA AND EXPOSES THE BASES TO THE SOLVENT [J].
BAUDIN, F ;
BACH, C ;
CUSACK, S ;
RUIGROK, RWH .
EMBO JOURNAL, 1994, 13 (13) :3158-3165
[6]   Influenza virus nucleoprotein interacts with influenza virus polymerase proteins [J].
Biswas, SK ;
Boutz, PL ;
Nayak, DP .
JOURNAL OF VIROLOGY, 1998, 72 (07) :5493-5501
[7]   Generation, representation and flow of phase information in structure determination:: recent developments in and around SHARP 2.0 [J].
Bricogne, G ;
Vonrhein, C ;
Flensburg, C ;
Schiltz, M ;
Paciorek, W .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2003, 59 :2023-2030
[8]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[9]   STRUCTURE OF RIBONUCLEOPROTEIN OF INFLUENZA VIRUS [J].
COMPANS, RW ;
CONTENT, J ;
DUESBERG, PH .
JOURNAL OF VIROLOGY, 1972, 10 (04) :795-&
[10]   An unconventional NLS is critical for the nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein [J].
Cros, JF ;
García-Sastre, A ;
Palese, P .
TRAFFIC, 2005, 6 (03) :205-213