Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders

被引:219
作者
von Bernhardi, Rommy [1 ]
Tichauer, Juan E. [1 ]
Eugenin, Jaime [2 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Neurol, Fac Med, Santiago 391, Chile
[2] Univ Santiago Chile, Lab Neural Syst, Dept Biol, Fac Chem & Biol, Santiago, Chile
关键词
cytokines; cytotoxicity; glial cells; inflammation; senescence; transforming growth factor-beta 1; AMYLOID PRECURSOR PROTEIN; NITRIC-OXIDE SYNTHASE; GROWTH-FACTOR-BETA; MILD COGNITIVE IMPAIRMENT; ALZHEIMERS-DISEASE BRAIN; CENTRAL-NERVOUS-SYSTEM; MARROW-DERIVED CELLS; AGE-RELATED-CHANGES; GENE-EXPRESSION; OXIDATIVE STRESS;
D O I
10.1111/j.1471-4159.2009.06537.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
P>Among multiple structural and functional brain changes, aging is accompanied by an increase of inflammatory signaling in the nervous system as well as a dysfunction of the immune system elsewhere. Although the long-held view that aging involves neurocognitive impairment is now dismissed, aging is a major risk factor for neurodegenerative diseases such as Alzheimer`s disease, Parkinson`s disease and Huntington's disease, among others. There are many age-related changes affecting the brain, contributing both to certain declining in function and increased frailty, which could singly and collectively affect neuronal viability and vulnerability. Among those changes, both inflammatory responses in aged brains and the altered regulation of toll like receptors, which appears to be relevant for understanding susceptibility to neurodegenerative processes, are linked to pathogenic mechanisms of several diseases. Here, we review how aging and pro-inflammatory environment could modulate microglial phenotype and its reactivity and contribute to the genesis of neurodegenerative processes. Data support our idea that age-related microglial cell changes, by inducing cytotoxicity in contrast to neuroprotection, could contribute to the onset of neurodegenerative changes. This view can have important implications for the development of new therapeutic approaches.
引用
收藏
页码:1099 / 1114
页数:16
相关论文
共 204 条
[1]   Reversal of aging by NFκB blockade [J].
Adler, Adam S. ;
Kawahara, Tiara L. A. ;
Segal, Eran ;
Chang, Howard Y. .
CELL CYCLE, 2008, 7 (05) :556-559
[2]   Motif module map reveals enforcement of aging by continual NF-κB activity [J].
Adler, Adam S. ;
Sinha, Saurabh ;
Kawahara, Tiara L. A. ;
Zhang, Jennifer Y. ;
Segal, Eran ;
Chang, Howard Y. .
GENES & DEVELOPMENT, 2007, 21 (24) :3244-3257
[3]   Inflammation and Alzheimer's disease [J].
Akiyama, H ;
Barger, S ;
Barnum, S ;
Bradt, B ;
Bauer, J ;
Cole, GM ;
Cooper, NR ;
Eikelenboom, P ;
Emmerling, M ;
Fiebich, BL ;
Finch, CE ;
Frautschy, S ;
Griffin, WST ;
Hampel, H ;
Hull, M ;
Landreth, G ;
Lue, LF ;
Mrak, R ;
Mackenzie, IR ;
McGeer, PL ;
O'Banion, MK ;
Pachter, J ;
Pasinetti, G ;
Plata-Salaman, C ;
Rogers, J ;
Rydel, R ;
Shen, Y ;
Streit, W ;
Strohmeyer, R ;
Tooyoma, I ;
Van Muiswinkel, FL ;
Veerhuis, R ;
Walker, D ;
Webster, S ;
Wegrzyniak, B ;
Wenk, G ;
Wyss-Coray, T .
NEUROBIOLOGY OF AGING, 2000, 21 (03) :383-421
[4]   β-Amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology [J].
Apelt, J ;
Schliebs, R .
BRAIN RESEARCH, 2001, 894 (01) :21-30
[5]   DISTRIBUTION OF ALZHEIMER-TYPE PATHOLOGICAL-CHANGES IN NONDEMENTED ELDERLY INDIVIDUALS MATCHES THE PATTERN IN ALZHEIMERS-DISEASE [J].
ARRIAGADA, PV ;
MARZLOFF, K ;
HYMAN, BT .
NEUROLOGY, 1992, 42 (09) :1681-1688
[6]   Mitochondrial oxygen radical generation and leak: Sites of production in state 4 and 3, organ specificity, and relation to aging and longevity [J].
Barja, G .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1999, 31 (04) :347-366
[7]   How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: the role of microglia and astrocytes [J].
Blasko, I ;
Stampfer-Kountchev, M ;
Robatscher, P ;
Veerhuis, R ;
Eikelenboom, P ;
Grubeck-Loebenstein, B .
AGING CELL, 2004, 3 (04) :169-176
[8]   Ibuprofen decreases cytokine-induced amyloid beta production in neuronal cells [J].
Blasko, I ;
Apochal, A ;
Boeck, G ;
Hartmann, T ;
Grubeck-Loebenstein, B ;
Ransmayr, G .
NEUROBIOLOGY OF DISEASE, 2001, 8 (06) :1094-1101
[9]   Alzheimer's disease [J].
Scheltens, Philip ;
De Strooper, Bart ;
Kivipelto, Miia ;
Holstege, Henne ;
Chetelat, Gael ;
Teunissen, Charlotte E. ;
Cummings, Jeffrey ;
van der Flier, Wiesje M. .
LANCET, 2021, 397 (10284) :1577-1590
[10]   Microglia-mediated neurotoxicity: uncovering the molecular mechanisms [J].
Block, Michelle L. ;
Zecca, Luigi ;
Hong, Jau-Shyong .
NATURE REVIEWS NEUROSCIENCE, 2007, 8 (01) :57-69