Light-dependent death of maize lls1 cells is mediated by mature chloroplasts

被引:113
作者
Gray, J
Janick-Buckner, D
Buckner, B
Close, PS
Johal, GS
机构
[1] Univ Toledo, Dept Biol Sci, Toledo, OH 43606 USA
[2] Truman State Univ, Div Sci, Kirksville, MO 63501 USA
[3] Hickman High Sch, Columbia, MO 65202 USA
[4] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA
关键词
D O I
10.1104/pp.008441
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We reported previously the isolation of a novel cell death-suppressing gene from maize (Zea mays) encoded by the Lls1 (Lethal leaf spot-1) gene. Although the exact metabolic function of LLS1 remains elusive, here we provide insight into mechanisms that underlie the initiation and propagation of cell death associated with lls1 lesions. Our data indicate that lls1 lesions are triggered in response to a cell-damaging event caused by any biotic or abiotic agent or intrinsic metabolic imbalance-as long as the leaf tissue is developmentally competent to develop lls1 lesions. Continued expansion of these lesions, however, depends on the availability of light, with fluence rate being more important than spectral quality. Double-mutant analysis of lls1 with two maize mutants oil-yellow and iojap, both compromised photosynthetically and unable to accumulate normal levels of chlorophyll, indicated that it was the light harvested by the plant that energized lls1 lesion development. Chloroplasts appear to be the key mediators of Its I cell death; their swelling and distortion occurs before any other changes normally associated with dying cells. In agreement with these results are indications that LLS1 is a chloroplast-localized protein whose transcript was detected only in green tissues. The propagative nature of light-dependent lls1 lesions predicts that cell death associated with these lesions is caused by a mobile agent such as reactive oxidative species. LLS1 may act to prevent reactive oxidative species formation or serve to remove a cell death mediator so as to maintain chloroplast integrity and cell survival.
引用
收藏
页码:1894 / 1907
页数:14
相关论文
共 73 条
[1]   EVIDENCE THAT MOLECULAR-COMPONENTS OF PAPILLAE MAY BE INVOLVED IN ML-O RESISTANCE TO BARLEY POWDERY MILDEW [J].
AIST, JR ;
GOLD, RE ;
BAYLES, CJ ;
MORRISON, GH ;
CHANDRA, S ;
ISRAEL, HW .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1988, 33 (01) :17-32
[2]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[3]  
[Anonymous], 2001, PHYLOGENETIC ANAL US
[4]  
Ausubel FM., 1994, Curr. Protoc. Mol. Biol
[5]   Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola [J].
Bestwick, CS ;
Brown, IR ;
Bennett, MHR ;
Mansfield, JW .
PLANT CELL, 1997, 9 (02) :209-221
[6]   Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense [J].
Brodersen, P ;
Petersen, M ;
Pike, HM ;
Olszak, B ;
Skov, S ;
Odum, N ;
Jorgensen, LB ;
Brown, RE ;
Mundy, J .
GENES & DEVELOPMENT, 2002, 16 (04) :490-502
[7]   Cell death in maize [J].
Buckner, B ;
Johal, GS ;
Janick-Buckner, D .
PHYSIOLOGIA PLANTARUM, 2000, 108 (03) :231-239
[8]   The barley mlo gene: A novel control element of plant pathogen resistance [J].
Buschges, R ;
Hollricher, K ;
Panstruga, R ;
Simons, G ;
Wolter, M ;
Frijters, A ;
vanDaelen, R ;
vanderLee, T ;
Diergaarde, P ;
Groenendijk, J ;
Topsch, S ;
Vos, P ;
Salamini, F ;
Schulze-Lefert, P .
CELL, 1997, 88 (05) :695-705
[9]   The chloroplastic protein import machinery contains a Rieske-type iron-sulfur cluster and a mononuclear iron-binding protein [J].
Caliebe, A ;
Grimm, R ;
Kaiser, G ;
Lübeck, J ;
Soll, J ;
Heins, L .
EMBO JOURNAL, 1997, 16 (24) :7342-7350
[10]   Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants [J].
Collins, N ;
Drake, J ;
Ayliffe, M ;
Sun, Q ;
Ellis, J ;
Hulbert, S ;
Pryor, T .
PLANT CELL, 1999, 11 (07) :1365-1376