Pathogenic variants that alter protein code often disrupt splicing

被引:156
作者
Soemedi, Rachel [1 ,2 ]
Cygan, Kamil J. [1 ,2 ]
Rhine, Christy L. [2 ]
Wang, Jing [2 ]
Bulacan, Charlston [3 ]
Yang, John [4 ]
Bayrak-Toydemir, Pinar [5 ]
McDonald, Jamie [5 ]
Fairbrother, William G. [1 ,2 ,6 ]
机构
[1] Brown Univ, Ctr Computat Mol Biol, Providence, RI 02912 USA
[2] Brown Univ, Dept Mol Biol Cell Biol & Biochem, Providence, RI 02912 USA
[3] Brown Univ, Dept Comp Engn, Providence, RI 02912 USA
[4] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
[5] Univ Utah, Sch Med, Dept Pathol, Salt Lake City, UT USA
[6] Brown Univ, Hassenfeld Child Hlth Innovat Inst, Providence, RI 02912 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SEQUENCE MOTIFS; RNA; IDENTIFICATION; ENHANCERS; PREDICTION; COMPLEXES; EXONS;
D O I
10.1038/ng.3837
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The lack of tools to identify causative variants from sequencing data greatly limits the promise of precision medicine. Previous studies suggest that one-third of disease-associated alleles alter splicing. We discovered that the alleles causing splicing defects cluster in disease-associated genes (for example, haploinsufficient genes). We analyzed 4,964 published disease-causing exonic mutations using a massively parallel splicing assay (MaPSy), which showed an 81% concordance rate with splicing in patient tissue. Approximately 10% of exonic mutations altered splicing, mostly by disrupting multiple stages of spliceosome assembly. We present a large-scale characterization of exonic splicing mutations using a new technology that facilitates variant classification and keeps pace with variant discovery.
引用
收藏
页码:848 / +
页数:11
相关论文
共 45 条
[1]   Differential GC Content between Exons and Introns Establishes Distinct Strategies of Splice-Site Recognition [J].
Amit, Maayan ;
Donyo, Maya ;
Hollander, Dror ;
Goren, Amir ;
Kim, Eddo ;
Gelfman, Sahar ;
Lev-Maor, Galit ;
Burstein, David ;
Schwartz, Schraga ;
Postolsky, Benny ;
Pupko, Tal ;
Ast, Gil .
CELL REPORTS, 2012, 1 (05) :543-556
[2]  
[Anonymous], 1992, STAT MODELS S WADSWO
[3]  
BAIRD PA, 1988, AM J HUM GENET, V42, P677
[4]   Exome sequencing as a tool for Mendelian disease gene discovery [J].
Bamshad, Michael J. ;
Ng, Sarah B. ;
Bigham, Abigail W. ;
Tabor, Holly K. ;
Emond, Mary J. ;
Nickerson, Deborah A. ;
Shendure, Jay .
NATURE REVIEWS GENETICS, 2011, 12 (11) :745-755
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Resolution of the mammalian E complex and the ATP-dependent spliceosomal complexes on native agarose mini-gels [J].
Das, R ;
Reed, R .
RNA, 1999, 5 (11) :1504-1508
[7]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[8]   RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons [J].
Fairbrother, WG ;
Yeo, GW ;
Yeh, R ;
Goldstein, P ;
Mawson, M ;
Sharp, PA ;
Burge, CB .
NUCLEIC ACIDS RESEARCH, 2004, 32 :W187-W190
[9]   Predictive identification of exonic splicing enhancers in human genes [J].
Fairbrother, WG ;
Yeh, RF ;
Sharp, PA ;
Burge, CB .
SCIENCE, 2002, 297 (5583) :1007-1013
[10]   Model-based clustering, discriminant analysis, and density estimation [J].
Fraley, C ;
Raftery, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) :611-631