Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid

被引:93
作者
Dien, BS [1 ]
Nichols, NN [1 ]
Bothast, RJ [1 ]
机构
[1] USDA ARS, Natl Ctr Agr Utilizat Res, Fermentat Biotechnol Res Unit, Peoria, IL 61604 USA
关键词
catabolite repression; lactic acid production; xylose fermentation; Escherichia coli;
D O I
10.1038/sj.jim.7000299
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Conversion of lignocellulose,to lactic acid requires strains capable of fermenting sugar mixtures of glucose and xylose. Recombinant Escherichia coli strains were engineered to selectively produce L-lactic acid and then used to ferment sugar mixtures. Three of these strains were catabolite repression mutants (ptsG(-)) that have the ability to simultaneously ferment glucose and xylose. The best results were obtained for ptsG- strain FBR19. FBR19 cultures had a yield of 0.77 (g lactic acid/g added sugar) when used to ferment a 100 g/l total equal mixture of glucose and xylose. The strain also consumed 75% of the xylose. In comparison, the ptsG(+) strains had yields of 0.47-0.48 g/g and consumed 18-22% of the xylose. FBR19 was subsequently used to ferment a variety of glucose (0-40 g/l) and xylose (40 g/l) mixtures. The lactic acid yields ranged from 0.74 to 1.00 g/g. Further experiments were conducted to discover the mechanism leading to the poor yields for ptsG(+) strains. Xylose isomerase (XI) activity, a marker for induction of xylose metabolism, was monitored for FBR19 and a ptsG+ control during fermentations of a sugar mixture. Crude protein extracts prepared from FBR19 had 10-12 times the specific XI activity of comparable samples from ptsG(+) strains. Therefore, higher expression of xylose metabolic genes in the ptsG(-) strain may be responsible for superior conversion of xylose to product compared to the ptsG(+) fermentations.
引用
收藏
页码:221 / 227
页数:7
相关论文
共 35 条
[1]  
[Anonymous], 1996, ESCHERICHIA COLI SAL, P307
[2]   PARAMETRIC STUDIES OF ETHANOL-PRODUCTION FROM XYLOSE AND OTHER SUGARS BY RECOMBINANT ESCHERICHIA-COLI [J].
BEALL, DS ;
OHTA, K ;
INGRAM, LO .
BIOTECHNOLOGY AND BIOENGINEERING, 1991, 38 (03) :296-303
[3]   GENERALIZED INDICATOR PLATE FOR GENETIC, METABOLIC, AND TAXONOMIC STUDIES WITH MICROORGANISMS [J].
BOCHNER, BR ;
SAVAGEAU, MA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1977, 33 (02) :434-444
[4]   Fermentations with new recombinant organisms [J].
Bothast, RJ ;
Nichols, NN ;
Dien, BS .
BIOTECHNOLOGY PROGRESS, 1999, 15 (05) :867-875
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   The IdhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli [J].
Bunch, PK ;
MatJan, F ;
Lee, N ;
Clark, DP .
MICROBIOLOGY-UK, 1997, 143 :187-195
[7]   CATALYTIC PROPERTIES OF D-XYLOSE ISOMERASE FROM STREPTOMYCES-VIOLACEORUBER [J].
CALLENS, M ;
KERSTERSHILDERSON, H ;
VANOPSTAL, O ;
DEBRUYNE, CK .
ENZYME AND MICROBIAL TECHNOLOGY, 1986, 8 (11) :696-700
[8]  
Chang DE, 1999, APPL ENVIRON MICROB, V65, P1384
[9]   Mutation of the ptsC gene results in increased production of succinate in fermentation of glucose by Escherichia coli [J].
Chatterjee, R ;
Millard, CS ;
Champion, K ;
Clark, DP ;
Donnelly, MI .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (01) :148-154
[10]  
Cosquer A, 1999, APPL ENVIRON MICROB, V65, P3304