Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells

被引:110
作者
Cai, Dawen
Hoppe, Adam D.
Swanson, Joel A.
Verhey, Kristen J. [1 ]
机构
[1] Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Div Biophys Res, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1083/jcb.200605097
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Kinesin motor proteins drive the transport of cellular cargoes along microtubule tracks. How motor protein activity is controlled in cells is unresolved, but it is likely coupled to changes in protein conformation and cargo association. By applying the quantitative method fluorescence resonance energy transfer (FRET) stoichiometry to fluorescent protein (FP)-labeled kinesin heavy chain (KHC) and kinesin light chain (KLC) subunits in live cells, we studied the overall structural organization and conformation of Kinesin-1 in the active and inactive states. Inactive Kinesin-1 molecules are folded and autoinhibited such that the KHC tail blocks the initial Interaction of the KHC motor with the microtubule. In addition, in the inactive state, the KHC motor domains are pushed apart by the KLC subunit. Thus, FRET stoichiometry reveals conformational changes of a protein complex in live cells. For Kinesin-1, activation requires a global conformational change that separates the KHC motor and tail domains and a local conformational change that moves the KHC motor domains closer together.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 44 条
[1]   Review: regulation mechanisms of Kinesin-1 [J].
Adio, Sarah ;
Reth, Jolante ;
Bathe, Friederike ;
Woehlke, Gunther .
JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY, 2006, 27 (02) :153-160
[2]   The complex interplay between the neck and hinge domains in kinesin-1 dimerization and motor activity [J].
Bathe, F ;
Hahlen, K ;
Dombi, R ;
Driller, L ;
Schliwa, M ;
Woehlke, G .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (08) :3529-3537
[3]   A phosphatidylinositol-3-kinase-dependent signal transition regulates ARF1 and ARF6 during Fcγ receptor-mediated phagocytosis [J].
Beemiller, Peter ;
Hoppe, Adam D. ;
Swanson, Joel A. .
PLOS BIOLOGY, 2006, 4 (06) :987-999
[4]   Two binding partners cooperate to activate the molecular motor Kinesin-1 [J].
Blasius, T. Lynne ;
Cai, Dawen ;
Jih, Gloria T. ;
Toret, Christopher P. ;
Verhey, Kristen J. .
JOURNAL OF CELL BIOLOGY, 2007, 176 (01) :11-17
[5]   Kinesin's tail domain is an inhibitory regulator of the motor domain [J].
Coy, DL ;
Hancock, WO ;
Wagenbach, M ;
Howard, J .
NATURE CELL BIOLOGY, 1999, 1 (05) :288-292
[6]   Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain [J].
Friedman, DS ;
Vale, RD .
NATURE CELL BIOLOGY, 1999, 1 (05) :293-297
[7]   Kinesin light chains are essential for axonal transport in Drosophila [J].
Gindhart, JG ;
Desai, CJ ;
Beushausen, S ;
Zinn, K ;
Goldstein, LSB .
JOURNAL OF CELL BIOLOGY, 1998, 141 (02) :443-454
[8]   Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy [J].
Gordon, GW ;
Berry, G ;
Liang, XH ;
Levine, B ;
Herman, B .
BIOPHYSICAL JOURNAL, 1998, 74 (05) :2702-2713
[9]   Reducing the environmental sensitivity of yellow fluorescent protein - Mechanism and applications [J].
Griesbeck, O ;
Baird, GS ;
Campbell, RE ;
Zacharias, DA ;
Tsien, RY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :29188-29194
[10]   Kinesin's IAK tail domain inhibits initial microtubule-stimulated ADP release [J].
Hackney D.D. ;
Stock M.F. .
Nature Cell Biology, 2000, 2 (5) :257-260