Implicit sampling for particle filters

被引:104
作者
Chorin, Alexandre J. [1 ]
Tu, Xuemin
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
pseudo-Gaussian; Jacobian; chainless sampling; MONTE-CARLO;
D O I
10.1073/pnas.0909196106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a particle-based nonlinear filtering scheme, related to recent work on chainless Monte Carlo, designed to focus particle paths sharply so that fewer particles are required. The main features of the scheme are a representation of each new probability density function by means of a set of functions of Gaussian variables (a distinct function for each particle and step) and a resampling based on normalization factors and Jacobians. The construction is demonstrated on a standard, ill-conditioned test problem.
引用
收藏
页码:17249 / 17254
页数:6
相关论文
共 21 条
  • [1] [Anonymous], MOUVEMENT BROWNIEN
  • [2] [Anonymous], 2009, HDB NONLINEAR FILTER
  • [3] A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    Arulampalam, MS
    Maskell, S
    Gordon, N
    Clapp, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 174 - 188
  • [4] Bickel P., 2008, Sharp failure rates for the bootstrap particle filter in high dimensions, volume Volume 3 of Collections, P318, DOI DOI 10.1214/074921708000000228
  • [5] Bozic S.M., 1994, Digital and Kalman Filtering: an Introduction to Discrete-time Filtering and Optimum Linear
  • [6] Improved particle filter for nonlinear problems
    Carpenter, J
    Clifford, P
    Fearnhead, P
    [J]. IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1999, 146 (01) : 2 - 7
  • [7] Dimensional reduction for a Bayesian filter
    Chorin, AJ
    Krause, P
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (42) : 15013 - 15017
  • [8] MONTE CARLO WITHOUT CHAINS
    Chorin, Alexandre J.
    [J]. COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2008, 3 (01) : 77 - 93
  • [9] On sequential Monte Carlo sampling methods for Bayesian filtering
    Doucet, A
    Godsill, S
    Andrieu, C
    [J]. STATISTICS AND COMPUTING, 2000, 10 (03) : 197 - 208
  • [10] Doucet A., 2001, Sequential Monte Carlo methods in practice, V1